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ABSTRACT 

 

DESIGN AND SYNTHESIS OF PYRIMIDO[4,5-b]INDOLES AND  

FURO[2,3-d]PYRIMIDINES AS SINGLE AGENTS WITH COMBINATION 

CHEMOTHERAPY POTENTIAL OR AS INHIBITORS OF TUBULIN OR 

THYMIDYLATE SYNTHASE 

 

By 

Ravi Kumar Vyas Devambatla 

May 2015 

Dissertation supervised by Professor Aleem Gangjee 

This dissertation describes an introduction, background and research progress in the 

areas of multitargeted single agents and tubulin inhibitors in cancer chemotherapy and 

selective Toxoplasma gondii TS inhibitors for the treatment of toxoplasmosis. 

Tubulin inhibitors are important antitumor agents that disrupt microtubule dynamics. 

Thymidylate synthase (TS) inhibitors prevent cell division by interfering with de novo 

thymidylate synthesis. Antiangiogenic agents target tumor angiogenesis crucial for tumor 

growth and metastasis. Under normal circumstances, angiogenesis is typically limited to 

tumor cells and is mediated by receptor tyrosine kinases (RTKs). Combination 

chemotherapies of RTK inhibitors with cytotoxic agents that target either TS or tubulin 

have shown significant promise and several preclinical and clinical studies with such 

combinations are in progress. Multitargeted single agents with dual antiangiogenic and 
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cytotoxic mechanisms could avoid the major limitations associated with cancer 

chemotherapy: multidrug resistance and dose limiting toxicities. This dissertation focuses 

on the design and synthesis of pyrimido[4,5-b]indoles and furo[2,3-d]pyrimidines as 

potential single agents with dual antiangiogenic and cytotoxic activities. These efforts led 

to the identification of structural features that are necessary for inhibition of RTKs and/or 

tubulin polymerization. Novel synthetic strategies were developed for efficient synthesis 

of 2,4-diamino-5-thioaryl-pyrimido[4,5-b]indoles and 4-anilino-5-methyl-furo[2,3-

d]pyrimidines. 

Taxanes and vinca alkaloids are widely used tubulin inhibitors in cancer 

chemotherapy. However, their clinical use is compromised by two major mechanisms of 

drug resistance: the overexpression of Pgp and III-tubulin. This dissertation describes 

the design and synthesis of pyrimido[4,5-b]indoles as tubulin inhibitors that circumvent 

Pgp and III-tubulin mediated resistance. This work identified the structural features 

crucial for tubulin inhibition for the pyrimido[4,5-b]indole scaffold. 

Infection by Toxoplasma gondii can lead to toxoplasmosis in immune compromised 

patients such as organ transplant, cancer and AIDS patients. Current therapy involving 

combination of sulfadiazine and pyrimethamine is limited by drug resistance and 

treatment failures. The thymidylate synthase‒dihydrofolate reductase enzyme is 

important for thymidylate synthesis in T. gondii, and hence can be targeted to treat T. 

gondii infection. TS is highly conserved across species and selectivity for tgTS over 

human TS is significantly more challenging. The present work provides an efficient 

synthesis of 2-diamino-4-oxo-5-thioaryl-pyrimido[4,5-b]indoles as selective tgTS 

inhibitors.   
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I. BIOLOGICAL REVIEW  

A. Tubulin binding agents 

A.1 Microtubules  

Microtubules are long, filamentous protein polymers that form one of the major 

components of the cytoskeleton.1  

  

Figure 1. Polymerization of -tubulin heterodimers (modified from ref. 2). αβ-Tubulin 

heterodimers first form a short microtubule nucleus followed by elongation and 

arrangement to form a microtubule.  

Microtubules are composed of - and -tubulin heterodimers each with a molecular 

weight of about 50 kDa. The -tubulin heterodimers polymerize “head-to-tail” between 

the α- and β-tubulin to form protofilaments, which are aligned in parallel to form hollow 

cylindrical microtubule structure (Figure 1).2 The resulting microtubule has an outer 

diameter of 24 nm, a wall thickness of 5 nm, and a length extendable to about 25 µm. 

Each microtubule has α- and β-tubulin on the plus (+) and minus (–) ends, respectively. 
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A.2 Microtubule dynamics 

Microtubules exhibit two major forms of non-equilibrium dynamics, namely 

dynamic instability and treadmilling.  

 

Figure 2. Dynamic instability of microtubules (modified from ref. 2). 

In dynamic instability, the individual microtubule ends switch between phases of 

lengthening and shortening (Figure 2).3 The growth and shortening of microtubules occur 

more rapidly and more extensively at the plus (+) end, where the -tubulin is exposed, 

than at the minus (–) end, where -tubulin is exposed. The microtubules undergo 

relatively long periods of slow lengthening, brief periods of rapid shortening and periods 

of attenuated dynamics or pause, when the microtubule neither grows nor shortens 

detectably.3, 4 Dynamic instability is characterized by four main factors: rate of growth; 

rate of shrinkage; frequency of switching from the growth stage to shortening (known as 

‘‘catastrophe frequency’’) and frequency of switching from shrinkage to growth (known 

as ‘‘rescue frequency’’).4 
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Figure 3. Microtubule treadmilling (modified from ref. 2). 

The second dynamic behavior, known as microtubule treadmilling (Figure 3), 

involves net growth at the plus end of the microtubule and balanced net shortening at the 

minus end.4, 5 It results in an intrinsic flow of tubulin subunits from the plus end of the 

microtubule to the minus end and is particularly important in mitotic spindles. 

Microtubule associated proteins (MAPs), proteins associated with microtubules, are 

important for the formation and stability of microtubules.6 The two nonequivalent ends of 

microtubules are structurally well organized. The slow growing minus end is generally 

anchored at the microtubule organizing center (MTOC) of the centrosome whereas the 

plus end is highly dynamic and switches between phases of growth and shrinkage.6  

The polymerization dynamics of microtubules involves binding and/or hydrolysis of 

guanosine 5'-triphosphate (GTP).3, 6 Each -tubulin heterodimer has two GTP-binding 

sites: an exchangeable (E) site on β-tubulin and a non-exchangeable (N) site on α-tubulin 

that is always filled with GTP. Binding of GTP to the E-site of tubulin is required for 

microtubule polymerization whereas GTP hydrolysis is required for microtubule 

depolymerization.3  
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Figure 4. Polymerization dynamics of microtubules (modified from ref. 2). During 

polymerization, tubulin-bound GTP disassociates as soon as the tubulin-bound GDP 

binds to the microtubule or shortly thereafter. Depolymerization occurs when the GTP 

cap is hydrolyzed. 

GTP binding to β-tubulin causes straightening of the -tubulin heterodimer to a 

conformation that promotes polymerization.7 The GTP-bound heterodimer attaches to the 

plus end of the microtubule and then the GTP is hydrolyzed to tubulin–GDP and 

inorganic phosphate (Pi) (Figure 4), providing energy for the addition of another tubulin 

heterodimer. A microtubule end containing tubulin bound GTP or GDP-Pi is stable or 

“capped” against depolymerization. Hydrolysis of tubulin-bound GTP and the subsequent 

release of Pi induce a conformational change in the tubulin that results in microtubule 

depolymerization. At the final stage of the polymerization process, the GTP cap 

dissociates and leaves a microtubule core of β-tubulin bound with GDP.  

A.3 Role of microtubule dynamics in mitosis 

During mitosis, the duplicated chromosomes of cells are divided into two identical 

sets prior to division into two daughter cells.8 The correct movements of the 
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chromosomes and their proper segregation to daughter cells require extremely rapid 

microtubule dynamics. Their role in mitosis and cell division makes microtubules an 

important target for anticancer drugs.1, 9  

 

Figure 5. Microtubule dynamics during the cell cycle (modified from ref. 10). 

Microtubules are shown in green. 

Microtubule dynamics vary during the cell cycle, being least dynamic during the 

interphase and most dynamic during mitosis.10 Mitosis in most cells progresses rapidly 

and the highly dynamic microtubules in the spindle are required for all stages of mitosis 

(Figure 5). During the prophase of mitosis, microtubules become more dynamic and a 
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bipolar spindle-shaped array of microtubules is assembled outwards from the centrosome. 

In the prometaphase, the kinetochore microtubules attach to the poles and make vast 

growing and shortening excursions until they capture the chromosomes. In metaphase, 

chromosomes are aligned along the equator and have at least two microtubules extending 

from the kinetochores. When cells enter anaphase, the kinetochore microtubules shorten 

and pull chromosomes to the poles. During telephase and cytokinesis, the chromosomes 

arrive at the poles, the mitotic spindle disassembles and the parent cell divides into two 

daughter cells. As different stages of mitosis are dependent on microtubule dynamics 

(Figure 5), disruption of microtubule dynamics by microtubule targeting agents results in 

cell cycle arrest, eventually causing programmed cell death (apoptosis).10 

A.4 Classification of tubulin binding agents 

Tubulin binding agents are structurally highly diverse and are mainly classified into 

two groups: microtubule-stabilizers and microtubule-destabilizers.1 Microtubule-

stabilizers promote microtubule polymerization at high concentrations and include the 

taxanes and the epothilones. Microtubule-destabilizers induce microtubule 

depolymerization at high concentrations and include the vinca alkaloids and colchicine-

site binding agents. However, at low antiproliferative concentrations, both these types of 

agents suppress microtubule dynamics leading to mitotic arrest and subsequent cell 

death.1, 8 Tubulin binding agents are widely used for the treatment of both solid tumors 

and hematological malignancies.1 

Most microtubule targeting agents are divided into four classes based on their 

interactions within the taxane,11 vinca,12 colchicine,13 or the newly discovered maytansine 

site14 on tubulin.  
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A.4.1 Taxanes and epothilones: 

 

Figure 6. Taxane binding site and representative taxanes (modified from ref. 2). 

Paclitaxel (Taxol®), docetaxel (Taxotere®), and the epothilones bind to the -

subunit in the interior of the microtubule, commonly referred to as the taxane site (Figure 

6).11 The binding of paclitaxel leads to the stabilization of microtubules and an increase in 

net microtubule polymerization. Thus, the ability of the cells to break down the mitotic 

spindle during mitosis is inhibited by paclitaxel. With the spindle still in place, the parent 

cell cannot divide into daughter cells resulting in the inhibition of mitosis. Binding of 

paclitaxel stabilizes the microtubule by inducing a conformational change in β-tubulin 

which increases its affinity for adjacent tubulin molecules.12 Low concentrations of Taxol 

are sufficient to cause cell cycle arrest and induce apoptosis without changing 

microtubule mass. The IC50 of paclitaxel for an antimitotic effect in HeLa cells is 8 nM 

while the IC50 for an increase in microtubule polymerization is 80 nM.2 The taxoids are 

widely used in the treatment of breast, non-small cell lung, ovarian, head and neck and 

prostate cancers.15 
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Most antimitotic agents that induce microtubule polymerization, such as the 

epothilones, discodermolide and eleutherobin bind to the taxane binding site.11 

Ixabepilone (Ixempra®), which belongs to the epothilone class of taxane-site binders, 

was approved for the treatment of drug-refractory metastatic breast cancer in 2007.16  

A.4.2 The vinca alkaloids:  

The vinca alkaloids, including vinblastine, vincristine, vindesine, and vinorelbine 

have a broad spectrum of activity and have been widely used in cancer chemotherapy for 

lymphomas, non-small-cell lung cancer and pediatric cancers.1  

 

Figure 7. Vinca binding site and representative vinca alkaloids (modified from ref. 2). 

The vinca alkaloids bind to the -subunit on the exterior of the microtubule at a site 

commonly referred to as the vinca-binding domain (Figure 7). The rapid and reversible 

binding of vinblastine to soluble tubulin induces a conformational change that leads to 

tubulin self-association.12 Vinblastine binds with high affinity to the end of the 

microtubules but poorly to tubulin that is buried in the tubulin lattice. At high 

concentrations of 10‒100 nM in HeLa cells, vinblastine depolymerizes microtubules and 
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destroys mitotic spindles. At low concentrations (~1 nM), vinblastine does not 

depolymerize microtubules, yet it powerfully blocks mitosis by suppression of 

microtubule dynamics. The binding of one or two molecules of vinblastine per 

microtubule is sufficient to reduce tubulin dynamics by about 50%, without causing 

appreciable microtubule depolymerization. Other antitubulin agents such as the 

halichondrins,17 cryptophycins,18 and dolastatins19 also bind at the vinca binding site. 

Eribulin mesylate (Halaven®) is a synthetic halichondrin derivative which was approved 

by the U.S. Food and Drug Administration (FDA) for the treatment of metastatic breast 

cancer.20  

A.4.3 Colchicine-site agents:  

 

Figure 8. Colchicine binding site and combretastatins (modified from ref. 2). 

The third class comprises a diverse collection of small molecules, including 

colchicine (Figure 8), combretastatins A-1 (CA1) and A-4 (CA4), 2-methoxyestradiol 

and podophyllotoxin.21 Colchicine is not used as an antitumor agent due to its toxicity at 

doses that produce antimitotic effects.21 However, colchicine (Colcrys®) is useful for the 
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treatment of gout and familial Mediterranean fever.22 Colchicine blocks or suppresses cell 

division by inhibiting the development of spindles when the nuclei are dividing.21 

Therefore it inhibits the division of the nucleus and mitosis. Colchicine binds to soluble 

tubulin at a distinct site referred to as the colchicine binding site, which is on β-tubulin at 

the interface between α- and β-tubulins (Figure 8).12, 13 Colchicine forms a poorly 

reversible tubulin–colchicine complex with tubulin, which copolymerizes into the 

microtubule ends along with free tubulin molecules. The ends continue to grow with the 

complex, but their dynamics are suppressed. These effects lead to cell cycle arrest and 

apoptotic cell death. Similar to the vinca alkaloids, colchicine site binders depolymerize 

microtubules at high concentrations but suppress microtubule dynamics at low 

concentrations. Although there are no clinically approved anticancer agents that bind to 

the colchicine site, several agents including 2-methoxyestradiol,23, 24 CA4 phosphate 

(CA4P, Fosbretabulin®)25-28 and CA1 diphosphate (CA1P, OXi4503®)29 have been 

evaluated in phase 1 and 2 clinical trials as anticancer agents either alone or in 

combination.  

In addition to the antimitotic effect, combretastatins are potent vascular-disrupting 

agents (VDAs) that target endothelial cells and pericytes of the already established tumor 

vasculature.30, 31 CA4P rapidly depolymerizes the microtubules of endothelial cells, 

reduces blood flow to the tumor by 95% within one hour, increases vascular permeability 

and hemorrhage of peripheral vessels.32 Based on this property, both CA4 and CA4P 

have been evaluated as anti-vascular agents in phase 1 and 2 clinical trials.30, 33 

Importantly, VDAs seem to damage tumor vasculature without significantly harming 

normal tissues. This selectivity of the VDAs for tumor vasculature can be attributed to 
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the differences between the mature vasculature of normal tissues and the immature or 

forming vasculature of tumors.32, 34 Also, the actin cytoskeleton in endothelial cells of 

immature tumor vasculature is underdeveloped, which is likely to make the cells more 

susceptible to damaging agents. In addition, the differences in rates of endothelial cell 

proliferation may also be a causative factor to the observed tumor selectivity.32  

A.4.4 Maytansine-site agents:  

 

Figure 9. Representative maytansine-site agents. 

Recently, Prota et al.14 demonstrated that maytansine (Figure 9) binds to a distinct 

site on β-tubulin designated as the “maytansine site”. Occupancy of this site inhibits 

tubulin polymerization by preventing the addition of new subunits at the plus ends of the 

microtubule, thus causing microtubule depolymerization. Phase 1 drug PM06018435 

(Figure 9) and Rhizoxin F36 are the other microtubule depolymerizing agents that bind to 

the maytansine site. Maytansine is the cytotoxic component in the antibody drug 

conjugate Trastuzumab emtansine (Kadcyla®), which was recently approved by the FDA 

for the treatment of HER2-positive advanced breast cancer.37   
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A.5 Mechanisms of tumor resistance to tubulin binding agents  

Multidrug resistance (MDR) severely limits the effectiveness of cancer 

chemotherapy, including tubulin binding agents.10, 38 Clinically significant mechanisms of 

tumor resistance for these agents are drug efflux by ATP-binding cassette (ABC) 

transporters and expression expression of the βIII-isotype of tubulin.  

ABC transporters such as P-glycoprotein (Pgp) are membrane-bound drug efflux 

proteins that reduce the cellular accumulation of substrates.39 Drug efflux by Pgp was 

identified as the chief mechanism of resistance to the vinca alkaloids and taxanes in 

vitro.38 For example, the potency of paclitaxel in Pgp overexpressing SKOV3 MDR-1-

6/6 cell lines was 800-fold less than in parental SKOV3 cell lines.40 Overexpression of 

Pgp has also been reported in the clinical setting in several tumor types, particularly in 

patients who have received chemotherapy.41 Furthermore, Pgp expression is considered to 

be a prognostic indicator in certain cancers and is associated with poor response to 

chemotherapy.41, 42 Attempts to reverse Pgp-mediated drug resistance by combining 

tubulin binding agents with Pgp inhibitors have been disappointing.43, 44  

The other clinical mechanism of resistance to tubulin binding agents involves the 

expression of βIII-isotype of tubulin. βIII-Tubulin expression is strongly associated with 

clinical resistance to taxanes in multiple tumor types such as non-small cell lung,45, 46 

breast,47 ovarian48 and gastric cancers.49 Paclitaxel had 5-fold less activity in III-tubulin 

expressing HeLa cell lines compared to the parental cell line.40 Also, paclitaxel displayed 

less suppression of microtubule dynamics in III-tubulin expressing cells than in control 

cells.50 It was hypothesized that the resistance to taxanes was due to the absence of 

Ser275 on βIII-tubulin.51 Paclitaxel is considered to reach its binding site on -tubulin by 
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diffusion through the pores in the microtubule wall. This process is stabilized by the 

formation of a hydrogen bond between 7-hydroxyl of paclitaxel and the -OH of Ser275 of 

-tubulin. In III-tubulin, Ser275 is replaced by Ala275 thus possibly resulting in 

decreased binding of paclitaxel to microtubules in III-tubulin expressing cell lines. 

Overexpression of βIII-tubulin is also involved in clinical resistance to Vinca alkaloids in 

non-small cell lung45, 52 and ovarian53 cancers. Colchicine-site binding agents have been 

shown to circumvent βIII-tubulin resistance,54, 55 which highlights the advantage of 

colchicine-site agents over taxanes and vinca alkaloids for cancer chemotherapy.  

B. Thymidylate synthase inhibitors 

B.1 Thymidylate synthase 

Thymidylate synthase (TS), a key enzyme in folate metabolism, is present in almost 

all living organisms including humans, bacteria and protozoa.56 It catalyzes the reductive 

methylation of 2'-deoxyuridine 5'-monophosphate (dUMP) to 2'-deoxythymidine 5'-

monophosphate (dTMP) (Figure 10), which is subsequently phosphorylated to 2'-deoxy-

thymidine 5'-triphosphate (dTTP) by cellular kinases. The dTTP formed is utilized by 

deoxyribonucleic acid (DNA) polymerase and is incorporated into DNA. The TS 

catalyzed reaction is a key step in DNA biosynthesis and the only de novo biosynthetic 

pathway to dTMP.57 During TS catalysis, N5,N10-methylene tetrahydrofolate (5,10-

CH2THF) acts as a one-carbon donor and is converted to dihydrofolate (DHF) (Figure 

10).  
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Figure 10. De novo synthesis of dTMP by the enzyme TS. TS catalyzes the transfer of 

methylene group from 5,10-CH2THF to dUMP resulting in the formation of dTMP and 

DHF. 

B.1.1 Structure of TS 

The TS enzyme (EC 2.1.1.45) is a homodimer consisting of two identical subunits 

each having a molecular weight of 30‒35 kDa and a primary sequence of approximately 

316 amino acids.56 It has two active sites, each formed by residues from monomers. The 

primary structures of several TS enzymes including those of humans, bacteriophages, and 

plants are known. TS enzymes are highly conserved in different species both in terms of 

structure and mechanism: 27 amino acids are completely conserved across all species and 

165 (80%) are conserved in more than 60% of the organisms. In particular, the active 

(dUMP) site of TS involves 32 amino acid residues, of which 16 are conserved in all 

species.  

In the protein data bank (PDB),58 several X-ray crystal structures of TS of various 

organisms are available in the native enzyme form or as complexes with substrates, 

products or inhibitors. Notably, the X-ray crystal structures of TS from several 
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prokaryotic species, including Escherichia coli (E. coli), and eukaryotes, such as Homo 

sapiens, Lactobacillus casei (L. casei, lc), and Pneumocystis carinii (P. carinii) are 

known in the literature.56 Also, X-ray crystal structures of human TS inhibitors such as 

pemetrexed and raltitrexed are known.59, 60 The existing crystal structures of TS in the 

native form or with inhibitors are important for the understanding of both the mechanism 

and the inhibition of TS.56 More importantly, they allow a structure-based rational design 

of TS inhibitors. 

Through site-directed mutagenesis, the function of each residue in the substrate-

binding site of TS has been studied. Cys198, Asn229, Arg178' and Arg179', Glu60 and 

Val316 (lcTS numbering) were determined to be the most important residues in dUMP 

binding site.56 During the TS catalysis, Cys198 is involved in the nucleophilic attack on 

C6 of the uracil ring resulting in the formation of a covalent bond between TS and 

dUMP, thus no mutation is tolerated at Cys198. Asn229 (lcTS numbering), another 

important residue in the active site, is involved in hydrogen bonding with the 4-oxo of 

dUMP.56 Thus substitution of Asn229 by other amino acids resulted in reduced or 

complete loss of catalytic activity. Asn229 also plays an important role in enzyme 

specificity. When Asn229 is replaced with Asp229, the enzyme is no longer a 

deoxyuridylate methylase, but a cytidylate methylase, which catalyzes the 

methyltranferase reaction with 2'-deoxycytidine 5'-monophosphate (dCMP) instead of 

dUMP.  

Amino acid residues, Arg178' and Arg179' (lcTS numbering), belong to the opposite 

subunit and bind to the phosphate group of the deoxyribose ring.56 Replacement of these 

two amino acids reduced the catalytic activity. The importance of other amino acids in 
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the active site has also been studied. The C-terminal residue Val316 participates in the 

conformational change of the enzyme, which occurs after the covalent binding of 

cofactor 5,10-CH2THF to the binary complex TS‒dUMP.56 This conformational change 

is necessary for the catalytic reaction because it positions dUMP and the cofactor to 

facilitate the transfer of the methyl group. Pro196, Pro197 and His199 (lcTS numbering) 

are highly conserved amino acids but their substitution with other amino acids is well 

tolerated.  

B.1.2 Catalytic mechanism of TS 

The mechanism of catalysis by TS has been examined61 and is depicted in Figure 11. 

Sequential binding of substrate (dUMP) and cofactor 5,10-CH2THF with TS enzyme 

induces a conformational change to form a non-covalent ternary complex 

(TS‒dUMP‒cofactor). In step A, Cys195 of human TS (hTS) attacks C6 of dUMP to 

form the enol. Protonation at the N10-position of 5,10-CH2THF results in the formation of 

the reactive N5-iminium species in step (B). The C5 position of the enol of dUMP reacts 

with the iminium ion of the activated cofactor to form an unstable covalent ternary 

complex in step (C).61 The proton at the C5-position of dUMP is abstracted by a base in 

the active site to provide enol in step (D). Abstraction of a proton from O4 of the enol 

results in the formation of an exocyclic methylene and also the release of the reduced 

cofactor in step (E). The enzymatic reaction is completed by the hydride transfer from C6 

of the reduced cofactor to form dTMP. The modified cofactor, which serves as a 

methylene donor and reductant, is released from the active site of TS followed by release 

of the product, dTMP.  
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Figure 11. The catalytic mechanism of human TS (modified from ref. 61). 
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B.2 Inhibition of TS  

Inhibition of TS depletes dTTP, one of the four building blocks required for DNA 

synthesis, thus leading to impaired DNA synthesis and repair.57 dTTP depletion also 

perturbs cellular levels of deoxynucleotides resulting in DNA damage.57, 62 Alternatively, 

TS inhibition causes accumulation of dUMP, and subsequent misincorporation of dUTP 

into DNA.57 These processes result in DNA double-strand breaks that lead to the 

initiation of apoptotic cell death, commonly referred to as “thymidine-less” cell death.57  

B.3 TS inhibitors in cancer chemotherapy 

Inhibition of TS in tumor cells inhibits DNA biosynthesis resulting in thymidine-less 

cell death. Normal cells also require TS for DNA synthesis.56 Nonetheless, TS inhibitors 

are widely used in cancer chemotherapy and the reason for their tumor selectivity is 

attributed to differences in transport, metabolism and the rates of cell division for normal 

and some tumor cells.57 As tumor cells replicate much more rapidly than normal cells, 

they have a higher need for synthesis of deoxynucleotides than normal cells. Several TS 

inhibitors have been rationally designed to target the TS-binding site of either dUMP or 

cofactor 5,10-CH2THF. TS inhibitors are classified broadly into two classes: dUMP-

based TS inhibitors and antifolates. 

B.3.1 dUMP-based TS inhibitors 

dUMP-based TS inhibitors are antimetabolites that are analogs of dUMP, one of the 

substrates in TS catalysis.57 These inhibitors, upon bioactivation, either inhibit TS or are 

misincorporated into DNA and/or RNA resulting in the inhibition of DNA and/or RNA 

synthesis. 
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Figure 12. dUMP and representative dUMP-based TS inhibitors.  

5-Fluorouracil (5-FU, Figure 12) is a dUMP-based inhibitor and represents the first 

class of clinically used TS inhibitors.63 The mechanisms of action of 5-FU include 

inhibition of TS, incorporation into DNA, and/or incorporation into RNA.57, 63 5-FU is a 

prodrug and must be bioactivated to various active nucleotides such as 5-fluoro-2'-

deoxyuridine 5'-monophosphate (5-F-dUMP, Figure 12), 5-fluoro-2'-deoxyuridine 5'-

triphosphate (5-F-dUTP) and 5-fluorouridine triphosphate (5-F-UTP). 5-F-dUMP is a 

mechanism-based inactivator of TS since it forms a covalent complex with TS and the 

cofactor. Alternatively, 5-F-dUMP can be phosphorylated by a series of enzymatic 

reactions to 5-F-UTP, which is misincorporated into RNA and causes inhibition of RNA 

processing and function.  

5-FU has been used for more than 50 years in the treatment of colorectal cancer.57 5-

FU remains one of the most widely used anticancer agents with a broad-spectrum activity 

against many solid tumors, including pancreas, breast, head and neck, gastric, and 

ovarian cancers. However, 5-FU causes toxicity to normal cells because the enzymes that 

activate it are not tumor selective.64 For instance, 5-FU causes diarrhea because of its 

activation in the intestines. Moreover, it is rapidly degraded by the dihydropyrimidine 

dehydrogenases in the liver, thereby limiting its oral bioavailability.  
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Capecitabine (Xeloda®) and tegafur (Figure 12) are prodrugs that are metabolized to 

5-FU, which then gets converted to active nucleotides involved in DNA and RNA 

damage.57, 64 Rational drug design of capecitabine exploited the utilization of three tumor-

overexpressing enzymes for its metabolism to to 5-FU. Capecitabine is readily absorbed 

in the gastro-intestinal tract and is converted to 5-fluoro-5'-deoxycytidine (5-F-5'-dCR) 

by carboxylesterases in the liver. 5-F-5'-dCR is then converted to 5-fluoro-5'-

deoxyuridine (5-F-5'-dUR) by cytidine deaminase, which is highly expressed in both 

liver and tumor tissues. The final step involves the conversion of 5-F-5'-dUR by either 

thymidine phosphorylase or uridine phosphorylase to form 5-FU. Both thymidine 

phosphorylase and uridine phosphorylase are highly active in tumors than in normal 

tissues, thus resulting in tumor specificity to capecitabine. This Medicinal Chemistry 

approach resulted in capecitabine with improved oral biovailability and tumor selectivity 

over 5-FU. Capecitabine is used clinically in the treatment of metastatic breast and 

colorectal cancers.65 It has also shown promising anticancer activity in patients with 

prostate, pancreatic, and ovarian cancers. Tegafur (Figure 12) is a prodrug that is 

bioactivated in the liver by cytochrome P-450 2A6 via 5'-hydroxylation to 5-FU.57  

B.3.2 Antifolates  

Antifolates are classes of compounds that are structurally related to natural cofactor. 

TS-targeting antifolates are designed to attach to the binding site of the folate cofactor 

5,10-CH2THF, involved in TS catalysis.57 They are competitive TS inhibitors, but unlike 

5,10-CH2THF, are not bioactivated to form the iminium species. Antifolates are generally 

divided into two classes: Classical antifolates that contain a benzoyl L-glutamate side-

chain and non-classical antifolates that lack the benzoyl L-glutamate. 
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N10-Propargyl-5,8-dideazafolate (PDDF, Figure 13), was one of the first antifolates 

to be developed as a specific TS inhibitor.66 It was also the first quinazoline-containing 

TS inhibitor that entered phase I clinical trials. However, its development was abondoned 

due of its renal toxicity resulting from poor water-solubility.64 Replacement of the 2-

amino group of PDDF with a 2-methyl group resulted in improved water solubility and 

decreased renal toxicity.  

Figure 13. Cofactor 5,10-CH2THF and representative antifolates as TS inhibitors. 

Raltitrexed ((Tomudex®), Figure 13) is the 2-methyl-containing classical antifolate 

derived from PDDF with decreased renal-toxicity but lower TS-inhibitory potency than 

PDDF.67 It is transported into cells via the reduced folate carrier (RFC) and undergoes 

rapid polyglutamylation by folylpoly-γ-glutamate synthetase (FPGS).64 Upon 

polyglutamylation, the potency of raltitrexed is increased by up to 100-fold and cellular 

retention is significantly prolonged.64 

In phase II and III trials, raltitrexed had good activity in patients with advanced 

colorectal and breast cancers.68 Unfortunately, raltitrexed caused life-threatening toxicity 
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attributed to gastrointestinal toxicity and myelosuppression. Raltitrexed was approved as 

first-line therapy for the treatment of advanced colorectal cancer in several European 

countries, Australia, Canada, and Japan.  

Multiple mechanisms of resistance such as decreased uptake by RFC and/or 

decreased FPGS activity limit the clinical use of classical antifolates.61 Nonclassical 

lipophilic antifolates such as nolatrexed (Thymitaq®) and plevitrexed (Figure 13) have 

been designed to circumvent these resistance mechanisms associated with classical 

antifolates. Plevitrexed contains a tetrazole moiety instead of the -carboxylic acid group 

and is transported into cells by RFC and passive diffusion but is not a substrate for 

FPGS.61 Nolatrexed is the first nonclassical TS inhibitor to reach phase II clinical trials.69 

However, it showed minimal activity in patients with advanced hepatocellular carcinoma.  

Pemetrexed ((Alimta®), Figure 13) is a purported multitargeted antifolate that 

inhibits TS in addition to other folate-dependent enzymes including dihydrofolate 

reductase (DHFR) (very weakly), 5-aminoimidazole-4-carboxamide ribonucleotide 

transformylase (AICARTFase), and glycinamide ribonucleotide transformylase 

(GARTFase) (very weakly).70 It predominantly enters cells via the RFC under normal 

pHs and requires polyglutamylation for maximal inhibitory effects.64 Pemetrexed is 

approved in the USA for the treatment of advanced nonsquamous non-small cell lung 

cancer and malignant pleural mesothelioma. The main toxicities associated with 

pemetrexed are hematologic toxicity, gastrointestinal toxicity, fatigue, and skin rashes.71   

B.4 Thymidylate synthase inhibition in toxoplasmosis 

Toxoplasmosis is a disease that affects the brain and the eyes and is caused by the 

intracellular parasite Toxoplasma gondii (T. gondii, tg).72 Humans generally acquire the 
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infection by ingestion of food or water that is contaminated with oocysts shed by cats or 

by eating raw or undercooked meat containing tissue cysts. According to the World 

Health Organization, the T. gondii parasite has infected up to a third of the world’s 

population.73 While toxoplasmosis is generally benign and goes unnoticed in 

immunocompetent individuals, it is a major opportunistic infection in immune 

compromised patients such as those with acquired immune deficiency syndrome (AIDS) 

and those receiving organ transplants or chemotherapy.72 T. gondii infection is one of the 

major causes of morbidity and mortality in HIV patients.74, 75 

Protozoa, including T. gondii, contain a bifunctional TS‒DHFR enzyme wherein the 

TS and DHFR exist on the same polypeptide.76 Recently, Sharma et al.77 solved the first 

three-dimensional structure of T. gondii TS‒DHFR (tgTS‒DHFR) with a resolution of 

3.7 Å. The tgTS‒DHFR enzyme is a homodimer in which each monomer has a molecular 

mass of 69 kDa. Each monomer consists of a TS domain (289 residues) on the C-terminal 

and a DHFR domain (252 residues) on the N-terminal. TS and DHFR domains are 

tethered together by a linker region (69 residues). The crystal structure and the overall 

sequence alignment also indicated that the active site of T. gondii TS (tgTS) is highly 

conserved.77 Cys489 of the TS domain is involved in the catalysis of dUMP to dTMP. 

The key residues important for the binding to PDDF (antifolate) are Ile402, Asp513, 

Leu516, Phe520, Arg603 and Met608. The tgTS‒DHFR exhibits substrate channeling i.e. 

the dihydrofolate is directly transferred from the TS active site to the DHFR active site 

without entering bulk solution.77 

T. gondii relies on TS‒DHFR for the synthesis of nucleotides essential for its 

survival. In addition, T. gondii, unlike humans, lacks salvage of thymidine thus tgTS 
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function is necessary for survival of the parasite.76 Since the TS‒DHFR enzyme is crucial 

for T. gondii survival, selective inhibition of tgTS represents a valid target to combat T. 

gondii infection. However, achieving selective inhibition of tgTS over hTS is difficult 

because TS is highly conserved across species (much more than DHFR) and also there is 

significant homology between the active site residues of tgTS and hTS as there is across 

species.77, 78  

C. Receptor tyrosine kinase inhibitors 

C.1 Angiogenesis 

Angiogenesis is a complex physiological process in which new blood vessels are 

formed from existing vasculature.79 Under normal physiological conditions, angiogenesis 

is tightly regulated by a balance between proangiogenic and antiangiogenic factors and is 

only promoted during embryonic and post-embryonic development, reproductive cycle, 

and wound repair.80 However, upregulated angiogenesis has been described as one of the 

hallmarks of cancer, playing a crucial role in tumor growth, invasion, and metastasis. To 

grow beyond 2‒3 mm3 in size, solid tumors require increased blood supply to fulfill their 

demand for nutrients, oxygen, and proteolytic enzymes.81 As a tumor grows in size, it 

also becomes increasingly hypoxic, and triggers the release of proangiogenic factors such 

as vascular endothelial growth factor (VEGF), platelet-derived endothelial growth factor 

(PDGF) and epidermal growth factor (EGF). These growth factors act as proangiogenic 

signals to initiate angiogenesis. 
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Figure 14. The angiogenic process (modified from ref. 81). 

Angiogenesis is initiated when resting endothelial cells are activated by a 

proangiogenic signal (Figure 14). Endothelial cells release membrane degrading enzymes 

leading to migration, proliferation and finally differentiation to form new microvessels. A 

scheme describing the angiogenic process is provided in Figure 14. 

The new blood vessels grow and infiltrate into the tumor, thereby providing nutrients 

and oxygen to sustain tumor proliferation and a route for cancer cell dissemination. This 

results in tumor progression and metastases.82 The sustained growth of solid tumors is 

highly dependent on angiogenesis. Thus antiangiogenic agents have been widely used in 

the treatment of cancer.83, 84 The present review will focus on receptor tyrosine kinases 

(RTKs) as potential targets for the inhibition of angiogenesis. 

 

 



www.manaraa.com

 26 

C.2 Receptor tyrosine kinases  

Proangiogenic growth factors such as VEGF, PDGF and EGF bind to their 

corresponding growth factor receptors, commonly known as receptor tyrosine kinases 

(RTKs), and initiate signal transduction.85 The RTKs, namely vascular endothelial 

growth factor receptor-2 (VEGFR-2), platelet-derived growth factor receptor- (PDGFR-

 and epidermal growth factor receptor (EGFR), are cell-surface receptors that transfer a 

phosphate group from adenosine 5'-triphosphate (ATP) to the hydroxyl group of tyrosine 

of specific proteins inside the cell. The RTKs possess an extracellular domain, a 

transmembrane domain and an intracellular kinase catalytic domain (Figure 15).  

 

Figure 15. Signaling pathways of  RTKs (modified from ref. 86). 
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Binding of the growth factor to the extracellular domain of RTKs results in receptor 

dimerization followed by autophosphorylation of the tyrosine residues within the 

cytoplasmic domain. Autophosphorylation then triggers a cascade of downstream cell 

signaling pathways (Figure 15) mediated by kinases such as Ras kinase, phosphoinositide 

3-kinase (PI3K), mitogen/extracellular signal-regulated kinase (MEK) and extracellular 

signal-regulated kinase (ERK). Under normal physiological conditions, these signaling 

pathways are tightly monitored and regulated. Disregulation of these signaling pathways 

has been linked to malignancy and significantly contributes to the hallmarks of cancer:87 

insensitivity to antigrowth signals, evasion of apoptosis, sustained angiogenesis, tumor 

invasion and metastases. Thus, inhibition of these RTKs offers a key therapeutic strategy 

for cancer therapy.88  

C.3 Inhibitors of receptor tyrosine kinases 

 

Figure 16. Representative RTK inhibitors in the clinic.  

Several antiangiogenic agents such as sunitinib (Sutent®), sorafenib (Nexavar®) and 

erlotinib (Tarceva®) are currently approved for use in cancer patients (Figure 16).79 
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Imatinib mesylate (Gleevec®, Figure 2) was the first RTK inhibitor approved in the U.S. 

for chronic myeloid leukemia.89 A number of RTKs have been recognized to be involved 

in tumor-induced angiogenesis. The key RTKs in angiogenesis include the VEGFR, 

PDGFR and EGFR families. 

VEGFR. Three types of VEGFRs have been identified, VEGFR-1, VEGFR-2 and 

VEGFR-3.90 Among these, VEGFR-2 has been recognized as the principal receptor that 

mediates VEGF stimulation in angiogenesis. The VEGF family consists of five members, 

VEGF-A, VEGF-B, VEGF-C, VEGF-D, and placental growth factor (PLGF). VEGF is 

an important growth factor that is involved in angiogenesis and vasculogenesis (i.e., the 

formation of the embryonic circulatory system).91 VEGFRs are almost exclusively 

expressed on endothelial cells. In addition, VEGFRs are overexpressed in several tumor 

types with different expression patterns, ligand specificity and cellular/physiological 

effects of these receptors. Targeted inhibition or disruption of VEGFR-2 produces an 

abrogation of angiogenesis, decreased endothelial cell survival and decreased tumor 

growth.90, 92 Several inhibitors of VEGFR-2 including sunitinib (Figure 16) and 

semaxanib have displayed antiangiogenic activity.93, 94 Sunitinib (Sutent®) is a multi-

RTK inhibitor (VEGFRs, PDGFRs and c-kit) important in the treatment of renal,95 

pancreatic,96 and gastrointestinal97 cancers. Sorafenib (Nexavar®) is also a multi-RTK 

inhibitor (VEGFR-2, VEGFR-3, PDGFR- and Raf kinase) used in the treatment of 

renal,98 hepatocellular99 and thyroid100 cancers. 

PDGFR. PDGFR family is comprised of two receptors, PDGFR-α and PDGFR-β, 

which are activated upon binding to one of the growth factors PDGF-AA, -BB, -CC, -

DD, and -AB.101 PDGFRs are expressed on pericytes, smooth muscle cells that provide 
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mechanical support to the vasculature. PDGFR plays an important role in angiogenesis 

by stimulating the formation of microvascular pericytes, thereby stabilizing the newly 

formed blood vessels. They are also involved in the induction of VEGF secretion and 

consequently, angiogenesis. Sunitinib and sorafenib are the representative PDGFR- 

inhibitors in the clinic. 

EGFR. The EGFR family of receptors contains four members: EGFR-1 (later 

referred to as EGFR; also identified as Erb-B1, or human EGF receptor HER-1), HER-2 

(Erb-B2), HER-3 (Erb-B3), and HER-4 (Erb-B4).102 Among these, HER-2 lacks a known 

endogeneous ligand and HER-3 lacks kinase activity. The ligand for EGFR, EGF, 

controls a pathway that is linked to cell proliferation, migration, and differentiation. 

Overexpression of EGFR, its growth factors, and aberrant EGFR tyrosine kinase activity 

lead to increased tumor cell proliferation, survival and invasiveness.103 Inhibition of 

EGFR signaling has been shown to promote selective apoptosis in tumor endothelial 

cells.104 As a result, EGFR has been extensively studied and targeted by small molecule 

inhibitors and monoclonal antibodies.102 Erlotinib (Tarceva®) is an EGFR inhibitor used 

to treat pancreatic105 and non-small cell lung106 cancers. 

C.4 ATP-binding site of RTKs 

Several X-ray crystal structures of RTKs are available in the PDB database.58 All 

kinases share a catalytic domain that contains the ATP-binding site. The ATP-binding 

site of RTKs has been utilized as a promising target for rational drug design. Structural 

homology and diversity among the ATP-binding sites of kinases has allowed the building 

of pharmacophore models for rational drug design.107, 108 The overall three-dimensional 

structure of the kinase domain is conserved throughout the protein kinase family.109 The 
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N-terminal lobe consists of a twisted β-sheet of five antiparallel β-strands and one α-

helix. The C-terminal lobe is made up of four β-strands and eight α-helices. Availability 

of ATP-bound or inhibitor-bound RTK crystal structures has enabled a detailed analysis 

of the catalytic site, its binding pockets in both active and inactive states as well as the 

modes of binding of RTK inhibitors.107  

RTK catalytic cleft. The catalytic cleft of the RTKs usually consists of two regions 

commonly referred to as the front cleft and the back cleft.110 While the ATP-binding site 

occupies the front cleft of the catalytic domain, the back cleft comprises of the elements 

responsible for the regulation of phosphorylation of peptide substrates. These two regions 

share a border that includes the aspartate-phenylalanine-glycine (DFG) motif and the β3 

segment. A gatekeeper residue and a β3-lysine residue form a gate between the front and 

back cleft. Access to the back cleft is controlled by kinase gatekeeper residues. Small 

amino acid residues such as threonine and alanine or bulky gatekeeper residues such as 

phenylalanine, leucine or methionine control entry to binding in the back pocket and 

selectivity for inhibitors. The β3-lysine which is conserved in all kinase enzymes can 

adopt varied conformations in different protein kinases and helps in anchoring the α- and 

β-phosphates of ATP in the active state.  

 In a fully active state, protein kinases adopt a DFG-in conformation where the side 

chain of the DFG aspartate is directed into the ATP-binding site and the aromatic ring of 

the phenylalanine is positioned in the back cleft.110 The aspartate in DFG motif chelates 

with Mg2+ and also helps in orienting the γ-phosphate of ATP for its transfer in the active 

DFG-in conformation.107, 110 The aromatic side chain of phenylalanine in the active DFG-
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in motif is in contact with αC. This contact in many active kinases facilitates the 

formation of a Lys-Glu ion pair for kinase catalysis.107 

In the inactive state, the DFG motif is in either a DFG-in or DFG-out 

conformation.110 In the DFG-out conformation, the phenylalanine aromatic ring is 

positioned in the ATP pocket and the aspartate residue of the DFG motif is in the back 

cleft.107  

The front cleft. The front cleft includes the ATP-binding site and small, non-ATP 

contact regions. The ATP site is broadly divided into the following subregions depending 

on the binding mode (Figure 17).107  

 

Figure 17. ATP-binding site of RTKs (modified from ref. 111). ATP is shown in 

magenta. 

1. Adenine region: Adenine region is predominantly hydrophobic and is involved in 

binding various inhibitor scaffolds.112 This region is bordered by the Hinge region and the 

gatekeeper. Two key hydrogen bonds are formed by the interaction of the N1 and N6 

amino nitrogens of the adenine ring with the NH and carbonyl groups of the peptide 
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backbone of the hinge region residues of the RTKs. At least one of these key hydrogen 

bonds are utilized by several RTK inhibitors in binding to the RTKs. Other backbone 

amide groups in the Hinge region can serve as hydrogen bond donors or acceptors for 

inhibitor binding. 

2. Ribose-binding region: The ribose pocket accommodates the sugar moiety of ATP and 

is adjacent to a hydrophilic, solvent exposed region. This pocket includes three 

hydrophobic residues (Ile, Val and Leu) which have been traditionally exploited in the 

design of EGFR inhibitors.111  

3. Phosphate-binding region: This region is covered by Asp, Lys and Asn residues and 

the DFG motif. This region is highly flexible, hydrophilic and solvent exposed, and is 

therefore considered less important in improving inhibitor affinity and potency.112  

4. Hydrophobic region II: This pocket is not used by ATP and serves as an entrance for 

ligand binding. The residues and conformation of this pocket vary depending on the 

kinase. Thus, this region has been used to obtain selectivity in the design of kinase 

inhibitors.112  

The back cleft. In addition to the ATP-binding site, the back cleft provides 

important binding regions. ATP does not bind in the pockets in the back cleft.110, 111  

1. Hydrophobic region I: The hydrophobic pocket in the back cleft adjacent to the 

adenine pocket is called Hydrophobic region I or Back pocket I (BP-I). This pocket has 

been explored in the design of inhibitors to gain selectivity for kinase targets with small 

gatekeeper residues.110  

2. In addition to BP-I, additional binding pockets BP-II, BP-III, and BP-IV can also be 

accessed by inhibitors depending on the binding state of the RTKs.107 



www.manaraa.com

 33 

Major progress has been made in the rational drug design of RTK inhibitors 

targeting the ATP-binding site of RTKs. The front catalytic cleft of all kinase enzymes is 

accessible to ligand binding. Small molecule inhibitors that target the front cleft use a 

core scaffold to recognize the hinge region. The core scaffold is then substituted to 

extend into the different pockets of the ATP-binding site resulting in improved binding 

affinity and selectivity for RTKs.113  

D. Single agents in combination chemotherapy  

Multitargeted single agents or designed multiple ligands are defined as rationally 

designed single chemical entities that can selectively target two or more biological targets 

or processes.114 The most commonly used strategy in the design of multitargeted agents is 

the hybrid drug design which involves combining structural elements from different 

compounds that bind to their respective targets. If the pharmacophores for the respective 

targets overlap, the common structural features of the lead compounds can be "merged" 

resulting in a multitargeted single agent.  

Targeting different pathways in tumor cells using multitargeted agents can increase 

therapeutic effectiveness, as this strategy may for example prevent cancer cells from 

developing resistance.115 Other advantages include a lower risk of drug‒drug interactions 

in vivo and improved patient compliance due to less medications required.116 A 

challenging factor in the design of multitargeted single agents is optimization of the 

pharmacokinetics of the lead compound while retaining a balanced target profile (i.e, 

optimizing the ratio of activities at the different targets and the effects of metabolism to 

ensure a therapeutic, but non-toxic effect at each of the targets).114  
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Several multitargeted drug strategies have been studied in cancer chemotherapy.117, 

118 One of the clinical strategies that have been successful is the combination of 

antiangiogenic and cytotoxic agents.119-124 Multitargeted single agents that combine 

antiangiogenic effects by RTK inhibition and cytotoxic effects, are reviewed in the 

following section. 

D.1 Dual RTK and TS inhibition 

 

Figure 18. Single agents with dual RTK and TS inhibitory activity. 

2,4-Diamino-5-thioaryl-pyrimido[4,5-b]indoles 1 and 2 (Figure 18) have been 

reported by Gangjee and coworkers125 as single agents with antiangiogenic and cytotoxic 

activities. These compounds inhibit VEGFR-2 and PDGFR-β for antiangiogenic effects 

and TS for cytotoxic effects with inhibitory potencies comparable or better than the 

standard compounds: semaxanib (VEGFR-2 inhibitor), DMBI (PDGFR-β inhibitor) and 

raltitrexed (hTS inhibitor). In COLO-205 metastatic colon cancer xenograft mouse 

models, compound 1 significantly decreased tumor growth, liver metastases and 

angiogenesis better than DMBI, remarkably without any toxicity. 
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D.2 Dual RTK and tubulin inhibition 

 

Figure 19. Single agents with dual RTK and tubulin inhibitory activity. 

Gangjee and coworkers55, 126 used hybrid drug design of RTK and tubulin inhibitors 

that led to the discovery of 3 and 4 (Figure 19) as single agents with antiangiogenic and 

cytotoxic activities. Both 3 and 4 had cytotoxic activity attributed to the inhibition of 

tubulin. While compound 3 inhibited both VEGFR-2 and PDGFR-kinases for 

antiangiogenic effects, compound 4 had inhibition against VEGFR-2. Compounds 3 and 

4 significantly reduced tumor size and vascularity in xenograft and allograft murine 

models and were superior to docetaxel and sunitinib, without any toxicity.  

D.3 Dual RTK and DHFR inhibition 

  

Figure 20. Single agents with dual RTK and DHFR inhibitory activity. 
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Gangjee et al.127 reported 5-substituted,2,4-diamino-furo[2,3-d]pyrimidines 5 and 6 

(Figure 20) as inhibitors of multiple RTKs and DHFR with antiangiogenic and antitumor 

activities. A 2:1 E/Z mixture of 5 and the E-isomer of 6 demonstrated dual VEGFR-2 and 

PDGFR-β inhibitory activity comparable to semaxanib and AG1295 as standard 

compounds, respectively. In a B16 melanoma mouse model, compounds 5 and 6 were as 

active as the standard antitumor agent methotrexate, both against primary tumors and 

metastases without any major toxicities.  

  



www.manaraa.com

 37 

II. CHEMICAL REVIEW 

This section will review the chemistry relevant to the work described in this 

dissertation. It provides synthetic approaches to the following heterocyclic ring systems. 

A. Pyrimido[4,5-b]indoles 

B. Furo[2,3-d]pyrimidines 

A. Pyrimido[4,5-b]indoles 

Methods employed in the synthesis of pyrimido[4,5-b]indoles can be broadly 

divided into three classes:  

1. Synthesis of pyrimido[4,5-b]indoles from indole precursors 

2. Synthesis of pyrimido[4,5-b]indoles from pyrimidine precursors 

3. Miscellaneous methods 

A.1 Synthesis of pyrimido[4,5-b]indoles from indole precursors 

 

Figure 21. Disconnection strategy for pyrimido[4,5-b]indoles from indole precursors. 

Different methods used in the synthesis of pyrimido[4,5-b]indoles from indoles or 

tetrahydroindoles utilize a disconnection strategy as shown in Figure 21.  

Treatment of 1,2-dichloro-3-nitrobenzene 7 with ethyl cyanoacetate provided 8,125 

which underwent reductive cyclization to the indole 9 (Scheme 1). Cyclocondensation of 
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9 with chlorformamidine hydrochloride afforded 2-amino-4-oxo-5-chloro-pyrimido[4,5-

b]indole 10.  

Scheme 1. Synthesis of 2-amino-pyrimido[4,5-b]indoles from indoles  

  

Alternatively, 2-amino-4-oxo-pyrimido[4,5-b]indoles can be synthesized by a two-

step procedure as shown in Scheme 2 below.128  

Scheme 2. Sequential two-step synthesis of 2-amino-pyrimido[4,5-b]indoles  
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Reaction of the indole 11 (Scheme 2) with cyanamide and conc. HCl provided 

amidine intermediate 12, which cyclized under alkaline conditions to 2-amino-4-oxo-6,7-

dimethoxy-pyrimido[4,5-b]indole 13.128  

Scheme 3. Synthesis of the 2-unsubstituted pyrimido[4,5-b]indole 17. 

 

Analogous to 4-chloroindole derivative 9 in Scheme 1, the 5-chloroindole 16 

(Scheme 3) was obtained from 1,3-dichloro-4-nitrobenzene 14.129 Compound 16 was 

cyclized using formamide to afford 2-unsubstituted 4-oxo-6-chloro-pyrimido[4,5-

b]indole 17. 

Scheme 4. Versatile synthesis of 2-substituted pyrimido[4,5-b]indoles 
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Showalter et al.130 reported a versatile procedure for the preparation of 2-substituted 

4-oxo-pyrimido[4,5-b]indoles 19, 22 and 23 from ethyl 2-amino-1H-indole-3-carboxylate 

18 (Scheme 4). Compound 18 was cyclized using formamide under basic conditions to 2-

unsubstituted pyrimido[4,5-b]indole 19. Treatment of 18 with cyanamide and acetonitrile 

under acidic conditions provided intermediates 20 and 21, which were cyclized using 1N 

NaOH to 2-amino- and 2-methyl-pyrimido[4,5-b]indoles 22 and 23, respectively.  

Scheme 5. Venugopalan strategy128 for the synthesis of 2-substituted pyrimido[4,5-

b]indoles 

 

Venugopalan et al.128 reported the synthesis of 2-substituted pyrimido[4,5-b]indoles 

from ethyl 2-amino-4,5-dimethoxy-indole carboxylate 11 (Scheme 5). Treatment of 11 

with ethyl carboxyisothiocyanate gave 24, which cyclized to the 2-thio-4-oxo-

pyrimido[4,5-b]indole 25 under basic conditions. Methylation of 25 afforded the 2-
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methylthio-pyrimido[4,5-b]indole 26, which upon reduction gave the 2-unsubstituted 

pyrimidoindole 27. For the synthesis of 2-unsubstituted pyrimido[4,5-b]indoles, this 

strategy presents an alternative to the approach described in Schemes 3 and 4, in which 2-

unsubstituted pyrimidoindoles 17 (Scheme 3) and 19 (Scheme 4) were synthesized by a 

direct reaction of indoles with formamide.  

Scheme 6. Synthesis of pyrimido[4,5-b]indoles via Pd-catalyzed amidation and 

cyclization of 2-haloindoles 

     

Kumar et al.131 synthesized pyrimido[4,5-b]indoles from 2-haloindoles via 

palladium-catalyzed amidation and cyclization. Coupling of the 3-formyl- or 3-acetyl-2-

haloindoles 28 and amides 29 provided 30 in 80‒94% yield (Scheme 6). Treatment of 30 

with ammonium formate resulted in the formation of pyrimido[4,5-b]indoles 31. 

According to the proposed mechanism for 30→31, ammonium formate thermally 

decomposes and releases ammonia which attacks 3-carbonyl of 30 and generates the 
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“imine” intermediate, which then cyclizes to provide the desired pyrimido[4,5-b]indole 

31. 

In Schemes 1‒6 above, indoles were utilized to obtain pyrimido[4,5-b]indoles. 

Schemes 7 and 8 below present synthesis of pyrimido[4,5-b]indoles from 

tetrahydroindoles.  

Scheme 7. Synthesis of pyrimido[4,5-b]indoles from tetrahydroindoles  

 

The tetrahydro-1H-indole 33 (Scheme 7) was obtained by the treatment of 2-

hydroxycyclohexanone 32 with benzylamine and malononitrile.132 Compound 33 was 

cyclized using formic acid to the 4-oxo-tetrahydropyrimido[4,5-b]indole 34. Chlorination 

of the 4-oxo of 34 followed by displacement with 3-chloroaniline afforded 35. Oxidation 

of 35 using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and subsequent removal 

of the benzyl group provided pyrimido[4,5-b]indole 36.  

Müller et al.133 synthesized a series of chiral pyrimido[4,5-b]indole derivatives 41 

and 42  (Scheme 8). Reaction of chiral tetrahydroindoles 37 with benzonitrile and sodium 
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methoxide yielded the 2-phenyl-4-amino-tetrahydropyrimido[4,5-b]indoles 38. On the 

other hand, treatment of 37 with benzoyl chloride provided 40, which was subsequently 

cyclized to the 2-phenyl-4-oxo-tetrahydropyrimido[4,5-b]indoles 41. Dehydrogenation of 

the tetrahydroindoles 38 and 41 furnished the desired pyrimido[4,5-b]indoles 39 and 42, 

respectively. 

Scheme 8. Synthesis of 2-phenyl-pyrimido[4,5-b]indoles from tetrahydroindoles 

  

A.2 Synthesis of pyrimido[4,5-b]indoles from pyrimidine precursors 

 

Figure 22. Disconnection strategies for pyrimido[4,5-b]indoles from pyrimidine 

precursors. 
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Different methods used in the synthesis of pyrimido[4,5-b]indoles from pyrimidines 

employ disconnection strategies A or B as shown in Figure 22.  

Scheme 9. Pyrimido[4,5-b]indol-2,4-diones from Fischer indole cyclization of 6-

(arylhydrazino)uracils 

 

A series of pyrimido[4,5-b]indoles using a facile Fischer-type cyclization were 

synthesized by G. E. Wright (Scheme 9).134 Treatment of 6-aminouracil 43 with phenyl 

hydrazines 44 provided 6-(arylhydrazino)uracils 45‒47. Compounds 45 and 46 

underwent acid‒mediated cyclization to 48 and 49 respectively, whereas 47 gave an 

equal mixture of regioisomers 50 and 51. The scope of this reaction was extended to the 

N1- and/or N3-methyl 6-(arylhydrazino)uracils 52‒54 or the N-methyl aniline derivative 

55, resulting in the synthesis of pyrimido[4,5-b]indol-2,4-diones 56‒59, respectively.  

The cyclization reaction is analogous to a classical Fischer indole synthesis. The 

mechanism probably involves N6-protonation followed by nucleophilic attack by the 

ortho phenyl carbon on the uracil 5-carbon and cleavage of the N-N bond. 
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Rearomatization of the phenyl moiety results in the formation of a 5-membered ring by a 

favored 5-exo-trig cyclization. Finally, the explusion of the uracil amino group gives rise 

to the pyrimido[4,5-b]indole. In the formation of 59 from 55, the N-methyl on the aniline 

moiety is retained in the product, which indicates that the uracil 6-amino group is 

expelled as ammonia in the final step of the cyclization.  

Scheme 10. Application of Nenitzescu reaction in the synthesis of pyrimido[4,5-

b]indoles 

  

The Nenitzescu reaction was utilized by Dotzauer et al.135 to prepare pyrimido[4,5-

b]indoles via a one-step procedure from 1,4-benzoquinone 60 and 6-aminopyrimidines 61 

(Scheme 10). Compounds 61 were treated with excess of 1,4-benzoquinone 60 in boiling 

glacial acetic acid to provide 6-hydroxy-pyrimido[4,5-b]indoles 62 via a mechanism 

similar to the Nenitzescu reaction. According to the proposed mechanism, the enone of 
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60 reacts with 6-aminopyrimidine 61 and forms a Michael adduct 62. Intermediate 62 is 

oxidized to 63 by benzoquinone 60, which in turn is reduced to hydroquinone 64. 

Intramolecular cyclization of 63 and final hydrogenation by hydroquinone 64 results in 

the formation of 2,4-disubstituted 6-hydroxy-pyrimido[4,5-b]indoles 65.  

Scheme 11. Synthesis of pyrimido[4,5-b]indole-2,4-diones from 4-azidouracils 

 

Lapachev et al.136 reported the conversion of 4-azidoouracils to pyrimido[4,5-

b]indoles (Scheme 11). The synthesis commenced by reacting N,N-disubstituted ureas 66 

and 67 with phenyl malonic acid 68 in the presence of acetic anhydride to obtain 1,3-

disubstituted barbituric acids 69 and 70, respectively. The 4-oxo of 69 and 70 were 

regiospecifically chlorinated to afford 71 and 72, which were then converted to 4-

azidouracils 73 and 74, respectively. Thermolysis of the azidouracils 73 and 74 in boiling 

xylene resulted in the formation of the pyrimido[4,5-b]indole-2,4-diones 75 and 76, 

respectively. Hydrogenolysis of the N-benzyl of 76 afforded the 1,3-unsubstituted 

pyrimido[4,5-b]indole-2,4-dione 77. 
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Schemes 12 and 13 below employ disconnection strategy B (Figure 22) for the 

synthesis of pyrimido[4,5-b]indoles via the intramolecular cyclization of arylamino- or 

cyclohexylamino-substituted pyrimidines. 

Scheme 12. Large-scale synthesis of pyrimido[4,5-b]indole 85 from trichloropyrimidine

 

Mauragis et al.137 developed a reliable large-scale process to produce >100 kg of the 

pyrimido[4,5-b]indole 85 (Scheme 12). The synthesis commenced with displacement of 

the 2- and 4-chloro of 2,4,6-trichloropyrimidine 78 with pyrrolidine 79 to obtain 80. 

Displacement of the remaining chloro group in 80 with the lithium amide of 81 provided 

82. Conversion of 82 to the tetrahydropyrimido[4,5-b]indole 84 was accomplished by 

alkylation with bromocyclohexanone 83 and subsequent cyclization. Dehydrogenation of 

84 using 5% Pd/C afforded the pyrimido[4,5-b]indole 85. 

Zhang et al.138 synthesized various pyrimido[4,5-b]indoles via Pd-catalyzed 

cyclization of 4-anilino-5-iodopyrimidines 88 (Scheme 13). Compounds 88 were 



www.manaraa.com

 48 

prepared from 4-chloro-5-iodopyrimidine 86 and appropriate anilines 87. Palladium-

catalyzed cyclization of the 5-iodo of 88 provided pyrimido[4,5-b]indoles 89 in moderate 

to good yields. 

Scheme 13. Synthesis of pyrimido[4,5-b]indoles via palladium-catalyzed cyclization 

 

A.3 Miscellaneous methods 

Schemes 14‒17 discuss the synthesis of pyrimido[4,5-b]indoles from oxindoles. 

Adib et al.139 reported microwave-assisted synthesis of 2,4-diaryl-pyrimido[4,5-b]indoles 

from oxindoles (Scheme 14). 

Scheme 14. Microwave-assisted synthesis of pyrimido[4,5-b]indoles from oxindoles 

  

Oxindoles 90 (X = H or Br) react with a variety of aryl nitriles of general structure 

91 under microwave irradiation and solvent-free conditions to produce the corresponding 

pyrimido[4,5-b]indoles 92 in good to high yields (Scheme 14).139  
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Scheme 15. Synthesis of 2-substituted pyrimido[4,5-b]indoles from oxindole 

 

Borovik et al.140 developed a versatile procedure for the synthesis of 2-substituted 4-

phenyl-pyrimido[4,5-b]indoles 97a‒d from oxindole 93 (Scheme 15). Condensation of 

oxindole 93 with benzaldehyde afforded 94, which was treated with triethyloxonium 

tetrafluoroborate to obtain the 2-ethoxy(3-benzylidene)indolenine tetrafluoroborate 95. 

Compound 95 was cyclized with substituted amidines 96 to provide 2-substituted 4-

phenyl-pyrimido[4,5-b]indoles 97a‒d.  

Scheme 16. Synthesis of 2-substituted pyrimido[4,5-b]indoles from 2-amino-

pyrimido[4,5-b]indole 97a 
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Scheme 16 provides the utilization of 2-amino-4-phenyl-pyrimido[4,5-b]indole 97a 

in the synthesis of various 2-substituted pyrimido[4,5-b]indoles 98 and 100a‒c.140 

Diazotization of 2-amino-pyrimidoindole 97a furnished 2-oxo-pyrimido[4,5-b]indole 98, 

which was chlorinated to obtain 99. Displacement of the 2-chloro of 99 with appropriate 

nucleophiles afforded 2-substituted pyrimido[4,5-b]indoles 100a‒c.  

Scheme 17. One-pot multi-component synthesis of pyrimido[4,5-b]indoles 

 

2-Oxo- or 2-thio-substituted 4-aryl-pyrimido[4,5-b]indoles 104 (Scheme 17) were 

synthesized from a one-pot multi-component reaction of oxindoles 101, urea or thiourea 

102 and aryl aldehyde 103 under solvent-free conditions (Scheme 17).141 The synthesis 

employed ytterbium triflate as the catalyst.   

Molina et al.142 employed an aza-Wittig type reaction in the synthesis of 

pyrimido[4,5-b]indole 110 (Scheme 18). Diazide 107 was prepared by condensation of o-

azidobenzaldehyde 105 with ethyl azidoacetate 106. Staudinger reaction between the 

diazide 107 and triphenyl phospine gave bis(iminophosphorane) 108. Treatment of 108 

with p-tolyl isocyanate in toluene at reflux provided pyrimido[4,5-b]indole 110. 

The conversion of 108 to 110 (Scheme 18) can be rationalized in terms of an initial 

aza-Wittig reaction between the iminophosphorane group linked to the aromatic ring and 

the isocyanate to give a highly reactive carbodiimide 109a. Intermediate 109a undergoes 
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cyclization by nucleophilic attack by the β-carbon (on the ester side chain) leading to the 

zwitterionic intermediate 109b, which undergoes further transformations to indole 109c. 

An aza-Wittig reaction of 109c with a second equivalent of aryl isocyanate gives the 

carbodiimide 109d, which subsequently cyclizes to pyrimido[4,5-b]indole 110 upon 

nucleophilic attack of the 2-amino group on the central carbon atom of the carbodiimide 

moiety. 

Scheme 18. Synthesis of pyrimido[4,5-b]indole 110 using an aza-Wittig type reaction 

 

B. Furo[2,3-d]pyrimidines 

Synthetic strategies that are used in the synthesis of furo[2,3-d]pyrimidines can be 

broadly classified into two strategies:  

1. Strategy I: From furan precursors  

2. Strategy II: From pyrimidine precursors 
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B.1. Furo[2,3-d]pyrimidines from furan precursors 

 

Figure 23. Disconnection strategies for furo[2,3-d]pyrimidines from furan precursors. 

Different methods used in the synthesis of furo[2,3-d]pyrimidines from furan 

precursors utilize disconnections A or B (Figure 23). For disconnection A, the precursors 

to cyclization are generally 2-amino-furan-3-nitriles. Disconnection B involves 2-

aminofurans and 1,3,5-triazines as precursors. 

Scheme 19. Synthesis of 4-amino-furo[2,3-d]pyrimidines from 2-amino-furan-3-nitriles  

 

Karl Gewald143 reported the first synthesis of furo[2,3-d]pyrimidines starting from a 

furan precursor. -Hydroxy ketones 111 and 112 were treated with malononitrile to 

afford 2-amino-3-cyanofurans 113 and 114 respectively (Scheme 19). Condensation of 

113 and 114 with formamide provided 4-amino-furo[2,3-d]pyrimidines 115 and 116 

respectively.  

The aforementioned strategy to obtain furo[2,3-d]pyrimidines from 2-amino-furan-3-

nitriles has been utilized by several research groups. Miyazaki and coworkers144 used this 

approach to synthesize 4-amino-5-aryl-furo[2,3-d]pyrimidines 120 (Scheme 20).  
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Scheme 20. Synthesis of 4-amino-5-aryl-furo[2,3-d]pyrimidines  

 

Treatment of 1-aryl-2-bromoethanone 117 (Scheme 20) with potassium formate and 

aqueous sodium bicarbonate provided 118.144 Compound 118 was treated with 

malononitrile to afford 2-amino-5-aryl-furan-3-nitriles 119, which were then heated to 

reflux with formamide to obtain 120 in 69‒74% yield. 

Scheme 21. Miyazaki strategy145 for the cyclization of 2-amino-3-cyanofurans to 

furo[2,3-d]pyrimidines  

 

Miyazaki et al.145 reported an alternate synthesis of 2-unsusbstituted 4-amino-5-aryl-

furo[2,3-d]pyrimidines 122 (Scheme 21) by treating the furan 121 with triethyl 

orthoformate, followed by amination and base-catalyzed cyclization. 
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Scheme 22. Dimroth rearrangement in the synthesis of N4-substituted 5,6-diaryl-furo[2,3-

d]pyrimidines  

  

Han and coworkers146 reported a novel synthesis of N4-substituted 5,6-diaryl-

furo[2,3-d]pyrimidines 129‒132 by microwave irradiation of the formamidine derivative 

123 and substituted amines (Scheme 22). Compound 123 was reacted with DMF and 

benzene sulfonyl chloride to obtain the formamidine derivative 124. Compound 124 

reacts with amines 125–127 or benzo[d][1,3]dioxol-5-amine 128 and undergoes Dimroth 

rearrangement to provide 129–132, respectively.  

Schemes 19‒22 focused on synthesis of furo[2,3-d]pyrimidines with no substitution 

at the 2-position. Scheme 23 below presents the synthesis of 2-methyl-furo[2,3-

d]pyrimidines by Dave et al.147 Acid-mediated condensation of the furan 114 with 

acetonitrile afforded 2-methyl-4-amino-5,6-diphenyl-furo[2,3-d]pyrimidine 133. 
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Scheme 23. Synthesis of 2-methyl-4-amino-furo[2,3-d]pyrimidine 133 

 

Schemes 19‒23 provided strategies for the synthesis of 4-amino-furo[2,3-

d]pyrimidines. Schemes 24 and 25 below focus on strategies toward the synthesis of 4-

oxo-furo[2,3-d]pyrimidines.  

Scheme 24. Synthesis of 4-oxo-furo[2,3-d]pyrimidines  

 

Foloppe and coworkers148 performed condensation of the furan 114 (Scheme 24) and 

in situ generated acetic formic anhydride to obtain the N-formyl derivative 134, which 

underwent thermal cyclization to 4-oxo-5,6-diphenyl-furo[2,3-d]pyrimidine 135. 

α-Chloro-β-keto esters 136 and 137 (Scheme 25) reacted with ethyl cyanoacetate 

under basic conditions to form ketonitriles, which were readily cyclized to 

tetrasubstituted furans 138 and 139, respectively.149 Treatment of 138 and 139 with 

formamide under acidic conditions afforded furo[2,3-d]pyrimidines 140 and 141, 
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respectively. Hydrolysis to acids 142 and 143 followed by decarboxylation gave 4-oxo-6-

aryl-furo[2,3-d]pyrimidines 144 and 145, respectively. Compounds 144 and 145 

represent examples of 5-unsubstituted 6-aryl-furo[2,3-d]pyrimidines from furan 

precursors.  

Scheme 25. Synthesis of 6-aryl-furo[2,3-d]pyrimidines 144 and 145 

 

Dang and Liu150 utilized disconnection strategy B (Figure 23) for the synthesis of 

furo[2,3-d]pyrimidines from 2-aminofurans (Scheme 26). 

Scheme 26. Synthesis of furo[2,3-d]pyrimidine 148 using Diels–Alder reaction 
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Diels–Alder reaction of 2-aminofuran 146 and 1,3,5-triazine 147 provided furo[2,3-

d]pyrimidine 148 (Scheme 26). The transformation proceeds through a series of reactions 

involving Diels–Alder reaction to give intermediate 149, followed by the elimination of 

ammonia to afford intermediate 150, which then undergoes a retro Diels–Alder reaction 

to 148. 

B.2. Furo[2,3-d]pyrimidines from pyrimidine precursors 

 

Figure 24. Disconnection strategy for furo[2,3-d]pyrimidines from pyrimidine 

precursors. 

Synthesis of furo[2,3-d]pyrimidines from pyrimidine precursors utilize 2-

hydroxypyrimidines as intermediates (Figure 24). Schemes 27‒32 represent examples 

that utilize 4-hydroxypyrimidines as precursors for the synthesis of furo[2,3-

d]pyrimidines. 

Scheme 27. Synthesis of 2,6-dimethyl-furo[2,3-d]pyrimidine 154 

 

Condensation of diethyl propargyl malonate 151 (Scheme 27) and acetamidine 

hydrochloride 152 under basic conditions gave 2,4-dihydroxy pyrimidine 153,55 which 
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underwent acid-catalyzed intramolecular cyclization to 2,6-dimethyl-4-oxo-furo[2,3-

d]pyrimidine 154 in 83% yield.  

Scheme 28. Synthesis of 4,6-dimethyl-furo[2,3-d]pyrimidines  

  

Condensation of β-ketoester 155 (Scheme 28) with amidines 156 afforded 5-acetonyl 

pyrimidines 157.151 Similar to Scheme 27, compound 157 was cyclized under acidic 

conditions to provide 4,6-dimethyl-2-substituted furo[2,3-d]pyrimidines 158.  

Unlike Schemes 27 and 28 that use acid-catalyzed cyclization, Sakamoto and 

coworkers152 employed basic conditions for the intramolecular cyclization to obtain the 

furo[2,3-d]pyrimidine 161 (Scheme 29) below.  

Scheme 29. Synthesis of furo[2,3-d]pyrimidine 161 from 5-iodopyrimidinol 

 

Sonogashira coupling of the 5-iodopyrimidinol 159 and phenylacetylene afforded 

intermediate 160 (Scheme 29),152 which was converted to 2,4-dimethyl-6-phenyl-

furo[2,3-d]pyrimidine 161 using triethylamine. Sonagashira coupling is also a key step in 

construction of the furan moiety in Schemes 30 and 31 below. 
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Scheme 30. Versatile synthesis of tetra-substituted furo[2,3-d]pyrimidines from 5-

iodopyrimidinols  

 

Liu et al.153 employed metal-catalyzed intramolecular cyclization in the synthesis of 

tetra-substituted furo[2,3-d]pyrimidines 169 (Scheme 30). The 2-substituted 5-

iodopyrimidinols 165 were obtained by the condensation of amidines 162 with β-

ketoester 163 to 164 and subsequent iodination. Sonogashira coupling of 

iodopyrimidinols 165 and acetylenes 166 provided 167, which upon Pd-catalyzed 

intramolecular cyclization with aryl iodides 168 gave 169. 

Scheme 30 above utilizes two metal-catalyzed coupling reactions to obtain furo[2,3-

d]pyrimidines from 5-iodopyrimidinols. Petricci and coworkers154 employed microwave 

irradiation to synthesize furo[2,3-d]pyrimidines from 5-iodopyrimidinols in a single step 

(Scheme 31). Sonagashira coupling of 2,6-disubstituted 5-iodopyrimidinols 170 and 

propargyl alcohol under microwave conditions provided 2,4,6-trisubstituted furo[2,3-

d]pyrimidines 172 via intermediate 171.154  
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Scheme 31. Microwave-assisted Sonagashira coupling in the synthesis of furo[2,3-

d]pyrimidines  

 

Scheme 32. Synthesis of 2-oxo-furo[2,3-d]pyrimidine from uracil  

 

Eger et al.155 reported a novel synthesis of 2-oxo-furo[2,3-d]pyrimidine 177 (Scheme 

32) via intramolecular cyclocondensation of 5-(2-bromovinyl)-uracil 176. Uracil 173 was 

converted to hydroxymethyluracil and subsequently oxidized to 5-formyluracil 174. 

Compound 174 was reacted with malonic acid to afford 5-(2-carboxyvinyl)uracil 175, 

which was decarboxybrominated to 176. Cylization of 176 to the 2-oxo-furo[2,3-

d]pyrimidine 177 was achieved using potassium tert-butoxide.  
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III.   STATEMENT OF THE PROBLEM 

The present work deals with the following three broad areas: 

A. Combination chemotherapy potential in single agents  

B. Inhibition of tubulin  

C. Selective inhibition of T.gondii thymidylate synthase  

A. Combination chemotherapy potential in single agents 

Angiogenesis – the process of formation of new blood vessels from existing 

vasculature  – is essential for tumor growth and metastasis.81 When a tumor grows 

beyond 2 mm3, it requires nutrients and oxygen for its growth and survival and thus 

initiates angiogenesis. Under hypoxic conditions, tumors secrete proangiogenic growth 

factors such as VEGF, PDGF, and EGF, key mediators of angiogenesis. These growth 

factors bind to their respective RTKs (VEGFR, PDGFR- and EGFR) and stimulate the 

process of angiogenesis resulting in tumor growth, survival and metastases. Agents that 

circumvent angiogenesis by inhibition of RTKs have established a new paradigm in 

cancer chemotherapy.79 RTK inhibitors that function by inhibition of a single RTK are 

prone to resistance by numerous mechanisms including redundant pathways, point 

mutations in the ATP-binding site and upregulation of additional RTKs.156, 157 

Consequently, multi-RTK inhibition in cancer chemotherapy has emerged as a promising 

approach and its validity has been highlighted by the approval of several multi-RTK 

inhibitors including sorafenib (inhibits VEGFR-2, VEGFR-3, PDGFR- and Raf kinase) 

and sunitinib (inhibits VEGFRs, PDGFRs and c-kit).158 However, the antiangiogenic 

treatment only prevents blood supply to the tumor but does not destroy cancer cells. Thus 
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antiangiogenic agents need to be combined with radiotherapy or chemotherapy to form an 

effective therapy and achieve synergistic effects.159  

Inhibitors of TS and tubulin are widely used cytotoxic agents in cancer 

chemotherapy. While inhibition of the enzyme TS prevents de novo synthesis of 

nucleotides crucial for DNA synthesis,57 tubulin inhibitors target microtubule dynamics 

involved in mitosis.1  

TS catalyzes the de novo synthesis of dTMP from dUMP utilizing 5,10-CH2THF as 

the cofactor.56 Because of its vital role in DNA synthesis and cell growth, TS is a viable 

target for several clinically used cancer chemotherapeutic agents.57 Nucleoside‒based 

inhibitors such as 5-FU and capecitabine have found extensive utility in ovarian, breast, 

colon, and several other cancers alone and in combinations and are a mainstay in cancer 

chemotherapy.63, 65 Antifolates, including raltitrexed and pemetrexed, are TS inhibitors 

clinically used, alone or in combination, in the treatment of mesotheliomas, non-small 

cell lung and advanced colorectal cancers.68, 70  

Since microtubule dynamics plays a crucial role in mitosis and cell division,1 

microtubule targeting agents represent an important class of anticancer agents. Tubulin 

binding agents such as paclitaxel and Vinca alkaloids are widely used to treat solid 

tumors and hematological malignancies.1, 8, 9 

Combination chemotherapy with antiangiogenic agents and cytotoxic agents is more 

effective in cancer treatment than either agent alone.159, 160 Single agents with dual 

antiangiogenic and cytotoxic activities significantly decreased tumor growth, tumor 

metastasis and angiogenesis superior to docetaxel and sunitinib in xenograft mice models, 

remarkably without any toxicity.125, 126 Such single agents with multiple mechanisms of 



www.manaraa.com

 63 

action are commonly referred to as designed multiple ligands and have several 

pharmacokinetic and pharmacodynamic advantages. These agents could potentially avoid 

drug‒drug interactions and pharmacokinetic problems associated with two or more 

agents.116, 161 In addition, they could prevent or delay the emergence of resistance and not 

cause overlapping toxicities.116, 162 Most significantly, single agents with dual cytotoxic 

and antiangiogenic activities simultaneously target rapidly proliferating tumor cells and 

the tumor vasculature. Also, such single agents could afford synergic effects as they can 

exert their cytotoxic effect as soon as or even during transient tumor vasculature 

normalization caused by the antiangiogenic component.80 As a result, structural design of 

such multitargeted single agents should allow the cytotoxicity to be manifested as soon as 

the antiangiogenic effects are operable. Thus the cytotoxic component of these agents 

need not be as potent as conventional chemotherapeutic agents. Dosing of such an 

antiangiogenic agent with comparatively lower cytotoxic activity would mimic 

metronomic chemotherapy, which utilizes more frequent and low-dose administrations of 

cytotoxic agents compared with conventional chemotherapy.163 Several clinical trials 

attest to the safety and efficacy of using antiangiogenic agents such as sunitinib and 

sorafenib with metronomic doses of cytotoxic agents.164-167 The single agents offer other 

advantages such as decreased cost and increased patient compliance,161 which can play a 

major part in the clinical success of a therapy. 

The antiangiogenic component of single agents targets RTK-overexpressing 

endothelial cells and as a result, is typically targeted to tumor cells under normal 

circumstances.81 In contrast, the cytotoxic component interferes with tumor cell division 

with less selectivity over rapidly dividing normal cells present in bone marrow, hair and 
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cells lining the mouth and gut.168 Therefore, a key challenge in the design of single agents 

with a cytotoxic component is that the cytotoxic component should only destroy tumor 

cells that are compromised via the antiangiogenic effect but should not cause toxicity to 

normal cells not affected by the antiangiogenic effect.125 As a result, the cytotoxic 

component of these single agents need not be as potent as conventional chemotherapeutic 

agents and hence should avoid dose-limiting toxicities168 associated with cytotoxic 

agents. 

Single agents with dual antiangiogenic and cytotoxic activities significantly 

decreased tumor growth, tumor metastasis and angiogenesis in xenograft mice models, 

remarkably without any toxicity.55, 125-127 The antiangiogenic effects of these compounds 

were due to inhibition of RTKs and the cytotoxic effects were due to inhibition of 

thymidylate synthase125 or tubulin55, 126 or dihydrofolate reductase127. In these studies, 

VEGFR-2, PDGFR- and EGFR were chosen as the targets for antiangiogenic effects 

because of their crucial role in angiogenesis. Additionally, the successful clinical and 

preclinical combinations of TS inhibitors (for e.g., capecitabine, pemetrexed) or tubulin 

inhibitors like paclitaxel with antiangiogenic agents was also an important factor in 

selecting TS and tubulin as the potential cytotoxic targets.121, 169-172  

A.1 Design of 2,4-diamino-5-arylthio-9H-pyrimido[4,5-b]indoles as single agents 

with dual TS and RTK inhibitory potential  

Gangjee et al.125 reported pyrimido[4,5-b]indoles 1 and 2 (Figure 25) as dual 

inhibitors of thymidylate synthase and multiple RTKs. In COLO-205 mice xenografts, 

compounds 1 and 2 significantly inhibited tumor growth, tumor vasculature and liver 

metastasis better than docetaxel and remarkably with no toxicity.125 Compounds 
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178‒180173 (Figure 25) are analogs of 1 with variations at 5-position and were previously 

synthesized. 

 

Figure 25. Lead compounds 1, 2 and 178‒180 as dual TS and RTK inhibitors. 

Table 1. Inhibition of TS, RTKs and angiogenesis by 1, 2 and 178‒180  

Compd 

Inhibition of 

hTS 

(µM) 

EGFR 

(nM) 

VEGFR-2 

(nM) 

PDGFR-β 

(nM) 

CAM 

angiogenesis 

(µM) 

1 0.54 15.1 ± 2.5 22.6 ± 2.7 2.8 ± 0.3 28.2 ± 2.9 

2 0.39 10.41 ± 1.9 56.3 ± 8.2 40.3 ± 6.7 20.3 ± 5.2 

178 0.48 8.3 ± 1.9 29.9 ± 4.8 >200 18.3 ± 3.2 

179 n.d.a 16.2 ± 3.2 46.7 ± 8.1 >200 1.2 ± 0.04 

180 0.14 20.8 ± 3.1 182.2 ± 34.2 60.5 ± 7.2 29.0 ± 3.0 

Raltitrexed 0.38 
    

Sunitinib  172.1 ± 19.4 18.9 ± 2.7 83.1 ± 10.1 1.3 ± 0.07 

Erlotinib  1.2 ± 0.2 124.7 ± 18.2  29.1 ± 1.9 

an.d. not determined 

Table 1 shows inhibitory data for 1, 2 and 178‒180 against human TS and kinases 

EGFR, VEGFR-2 and PDGFR-. Kinase inhibition was performed in cell-based assays 

and therefore, it should be noted that cellular permeability might play a role in the 

activities of these compounds.   



www.manaraa.com

 66 

 

Figure 26. Series I. 

Compounds 1a–7a (Series I, Figure 26) were designed in this study to improve the 

RTK‒inhibitory activity while retaining low submicromolar TS inhibition. Compounds 

1a and 2a with 4'-F and 4'-CF3 groups, respectively, were designed to evaluate the 

contribution of the para-electron-withdrawing moiety on biological activity. Compounds 

3a and 4a were designed to determine the importance of the methyl group at the 4'-

position for 2. In chorioallantoic membrane (CAM) assay, compound 179 with 3',4'-

dichloro group had antiangiogenic activity comparable to sunitinib and was 15-fold more 

active in this assay than the 4'-chloro analog 178.173 This increase in activity might be 

due to either electronics and/or lipophilicity of the additional 3'-chloro group. Novel 3',4'-

dimethyl analog 5a with lipophilicity similar to 179 was designed to evaluate the role of 

electronics and lipophilicity at 3'-position. The 4'-OMe analog 180 had lower RTK 

inhibitory activity than the 4'-methyl compound 2. To determine whether this loss of 

activity was due to steric intolerance at the 4'-position, compounds 6a and 7a with 

methoxy groups at the 3'- and 2'-positions, respectively, were designed.  

Target compounds 1a‒7a can be obtained via the synthetic procedure used for lead 

compounds 1 and 2. However, the synthesis of 1 and 2 involved seven steps from 

commercial starting materials and the overall yield was a mere 6%.125 Hence, it was 

important to devise an efficient route for the synthesis of the tricyclic target compounds. 
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Such an efficient synthetic route could also be utilized in the synthesis of lead compounds 

1 and 2, which are required in gram quantities for preclinical studies.  

A.2 Design of 4-substituted 5-methyl-furo[2,3-d]pyrimidines as single agents with 

dual tubulin and RTK inhibitory potential 

 

Figure 27. Lead compounds 181 and 182.  

Gangjee et al.174 reported the 5-methyl-furo[2,3-d]pyrimidines 181 and 182 (Figure 

27) with variation at N4-position.  

Table 2. Effects of 181 and 182 on cell proliferation, microtubule depolymerization and 

[3H]-colchicine binding 

Compd  
IC50 ± SD  

(MDA-MB-435)  

EC50 for MT 

depolymerization  

Inhibition of colchicine 

binding (% inhibition ± SD)  

1 µM  5 µM  

181 >10 µM  >40 µM  -  -  

182 4.3 ± 0.3 nM 23.9 nM 71 ± 6  96 ± 2  

CA4  3.4 ± 0.6 nM 13.0 nM 88 ± 2  99 ± 0.2  

 

N4-Desmethyl 181 was inactive in tubulin assay and in MDA-MB-435 cells (Table 

2). On the other hand, the N4-methyl analog 182 showed potent microtubule 

depolymerization and inhibition of [3H]-colchicine binding comparable to CA4.174  
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Table 3. RTK inhibitory activity of 181 and 182 

Compd 

EGFR 

inhibition 

(nM) 

VEGFR-2 

inhibition 

(nM) 

PDGFR- 

inhibition 

(nM) 

181 283.1 ± 40.1 38.1 ± 4.2 57.3 ± 8.0 

182 15.5 ± 2.0 9.3 ± 0.72 12.3 ± 2.0 

Sunitinib 172.1 ± 19.4 18.9 ± 2.7 83.1 ± 10.1 

Erlotinib 1.2 ± 0.2 124.7 ± 18.2  

 

In the kinase inhibition assays, the N4-methyl analog 182 was more active than the 

NH analog 181 (Table 3).175 More importantly, compound 182 was 2-fold and 7-fold 

more active than sunitinib in the VEGFR-2 and PDGFR- kinase assays, respectively.  

 

Figure 28. Conformational restriction of C4-N and N-C1' bonds due to N4-methyl group. 

Compared to the NH analog, the N-methyl compound 182 showed spectacular 

antimitotic and antitumor activities, which could be attributed, in part, to conformational 

restriction of the bonds connecting the pyrimidine ring and the phenyl ring (Figure 28). In 

181, the C4-N and N-C1' bonds connecting the pyrimidine and the phenyl moieties are 

freely rotatable. Whereas in 182, these bonds are somewhat restricted due to the presence 

of steric bulk of N4-methyl group and/or due to steric clash between the N4-methyl and 5-

methyl groups (Figure 28). 
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Figure 29. The conformations and 1H NMR analyses of 181 (Fig. A) and 182 (Fig. B). 

A 

B 
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The 1H NMR spectra of the N4-desmethyl analog 181 and the N4-methyl analog 182 

provided valuable information related to conformational restriction in 182 (Figure 29).175 

For 181, the “5-Me” protons appear at = 2.40 ppm whereas for 182, they are 

significantly shielded at = 1.05 ppm. This shielding of the “5-Me” protons in 182 is due 

to the proximity of a diamagnetic anisotropic cone in 182 arising from the phenyl ring. 

The steric bulk of the N4-methyl and/or steric clash between the N4-methyl and 5-methyl 

groups in 182 restrict the conformation and thus position the phenyl group on top of the 

5-methyl group (as in Figure 29B) resulting in the shielding effect. 

 

Figure 30. Series II.  

Compounds 1b–4b (Series II, Figure 30) with varying alkyl groups at the N4-

position were designed to determine the steric tolerance at the N4-position in the 

colchicine-binding site of tubulin and/or the ATP-binding site of RTKs. In addition, the 

larger alkyl groups in 1b‒4b require greater volume and further restrict the free rotation 

of the C4-N and N-C1' bonds. Introduction of these alkyl groups could improve the RTK-

inhibitory activity of 182 by forming additional hydrophobic interactions in the binding 

site (Figure 31).  
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Figure 31. Predicted binding modes of 182 (R = Me) in the ATP-binding site and docked 

poses of 182 in VEGFR-2 (PDB: 2XIR)176. 

The general RTK pharmacophore model consists of an Adenine region, a Sugar 

binding pocket and a Phosphate binding region which binds the adenine ring, the sugar 

moiety and the triphosphate moiety of ATP, respectively. Additionally, there are two 
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Hydrophobic regions I and II, neither of which are utilized by ATP for binding. The 

furo[2,3-d]pyrimidine ring of 182 and the designed compounds 1b–4b  could bind to the 

Adenine region similar to heterocyclic scaffold inhibitors such as quinazolines and 

pyrrolo[2,3-d]pyrimidines.177 If the furo[2,3-d]pyrimidines (exemplified by 182) occupy 

binding mode 1 (Figure 31), alkylation at N4-position might not be sterically tolerated. 

Alternatively, the furo[2,3-d]pyrimidines could adopt binding mode 2 in which the 

compounds are rotated around the 2-H‒C2 bond. In this mode, the N-alkyl group could 

orient towards the Sugar binding pocket or Hydrophobic region II and the 4-anilino group 

could occupy Hydrophobic region I. These compounds could also adopt binding mode 3 

in which the molecule is rotated by 60o (from mode 2). In this mode, the N-alkyl and the 

4-anilino groups could occupy the Sugar binding pocket and Hydrophobic region I, 

respectively. Docking studies performed on the X-ray crystal structure of VEGFR2 (pdb: 

2XIR)176 suggested the possibility of several binding modes. Representative low energy 

binding modes (-6.39 kcal/mol for binding mode 3) and (-4.16 kcal/mol for binding mode 

2) are shown in Figure 31. In both binding modes, compound 182 (R = Me) makes a 

hydrogen bond interaction with the backbone NH of cysteine in the hinge region. 

 

Figure 32. Series III.  

Compounds 1c–5c (Series III, Figure 32) were designed to determine the importance 

of the 4'-methoxy group for tubulin and RTK inhibition. Compounds 1c, 2c and 4c were 

designed to examine the role of 4'-methoxy group as a hydrogen-bond acceptor. 
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Compound 3c with a 4'-NHMe group was designed to determine if a hydrogen-bond 

donor is tolerated at this position. Compound 5c containing the 4'-NO2 group was 

designed to know whether an electron-withdrawing group is tolerated at this position for 

RTK inhibitory activity. On the basis of the previous SAR on related pyrimidine-fused 

scaffolds,55, 178 compound 5c is not expected to have antitubulin activity.  

Gram-scale synthesis of 182 was required for further preclinical evaluations 

including toxicity and xenograft studies in mice.  

B. Inhibition of tubulin  

Tubulin binding agents disrupt microtubule dynamics leading to mitotic arrest and 

cell death. Half of all human tumors have mutations in the p53 gene, and the most 

effective drugs in p53 mutant cell lines are tubulin binding agents.179, 180 Tubulin binding 

agents such as taxanes and vinca alkaloids are widely used for the treatment of solid 

tumors and hematological malignancies.1, 8, 9  

However, the enormous clinical success of taxanes and vinca alkaloids has been 

compromised by two major mechanisms of tumor resistance: Overexpression of Pgp and 

the expression of the III-tubulin.181 Pgp overexpression is clinically observed in many 

tumor cell lines, particularly in patients who have received chemotherapy.41 

Overexpression of Pgp resulted in poor response to taxol-based chemotherapy in patients 

with non-small cell lung cancer.41, 42 Use of Pgp inhibitors in overcoming Pgp-mediated 

resistance was not successful due to intolerable side effects.44 Tubulin binding agents that 

are not substrates of Pgp (for e.g. epothilones)181 represent a viable alternate strategy for 

circumventing Pgp-mediated resistance. Such agents would be extremely useful for 

patients that develop resistance due to Pgp overexpression.39, 42, 181  
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The expression of βIII-tubulin is involved in clinical resistance to taxanes and Vinca 

alkaloids in non-small cell lung,45, 46, 52 breast,47 ovarian48, 53 and gastric49 cancers. 

Colchicine-site binding agents were not susceptible to βIII-tubulin mediated resistance,54, 

55 which demonstrates the importance of developing anticancer drugs that bind to the 

colchicine-site. Although there are no colchicine-site agents in the clinic, several agents 

including CA4P (Fosbretabulin®)25-28 and CA1P (OXi4503)29 are currently in phase 1 

and 2 clinical trials. Development of tubulin binding agents that are less sensitive to Pgp  

and/or βIII-tubulin mediated resistance could result in broader antitumor activity and 

improved rates of survival. 

B.1 Design of N4-aryl-5-chloro-2,4-diamino-pyrimido[4,5-b]indoles as inhibitors of 

tubulin  

 

Figure 33. Tubulin inhibitor 183.  

Pyrimido[4,5-b]indole 183 (Figure 33) is a potent microtubule depolymerizing agent 

that inhibited the growth of cancer cells with GI50 values in the submicromolar range.182 

It was discovered to be a colchicine-site binding agent and also overcame the Pgp and 

III-tubulin mediated drug resistance clinically observed with paclitaxel and vinca 

alkaloids.  
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Table 4. Compound 183 inhibits cell proliferation and tubulin assembly   

Compd 
IC50 ± SD 

(MDA-MB-435)  

Inhibition of 

tubulin assembly  

183 183 nM 7.1 ± 0.8 µM 

CA4 3.4 nM 1.0 ± 0.09 µM  

 

Compound 183 had a 7-fold lower inhibition of tubulin assembly than the standard 

colchicine site agent CA4 (Table 4).182 It showed a 60-fold higher IC50 value than CA4 in 

MDA-MB-435 cancer cell lines. Compound 183 represented the first example of 

pyrimido[4,5-b]indoles as a potent tubulin inhibitor. It was of interest to identify the 

structural features of the tricyclic pyrimido[4,5-b]indoles that contribute to antitubulin 

activity. Hence, compounds 1d‒6d (Series IV, Figure 34) were designed as potential 

inhibitors of tubulin.182  

 

Figure 34. Series IV. 

Compound 1d (Figure 34) was designed to determine the importance of the 4'-

methoxy group to tubulin inhibition. Compounds 2d and 3d are designed to evaluate the 

role of electron-donating and electron-withdrawing groups at 4'-position. The 3'-methoxy 

analog 4d was designed to explore the effect of a methoxy group at this position to 
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antitubulin activity. Compound 5d was designed to evaluate the effect of electron-

withdrawing group at the 3'-position.  

Compound 6d (Figure 34) was designed as a conformationally restricted analog by 

incorporating the bicyclic 6-methoxy-tetrahydroquinoline moiety onto the 4-position of 

the pyrimido[4,5-b]indole. Compared to the N-methylanilines, the tetrahydroquinoline 

moiety eliminates the rotation around the “N-Ph” bond thereby restricting the 

conformation of the phenyl ring. The restricted confirmation of the phenyl group in 5d 

results in a much more rigid structure than 183 but still maintains the phenyl and alkyl 

substitutions on the N4-position as in 183. 

B.2 Design of 2,4-substituted pyrimido[4,5-b]indoles as inhibitors of tubulin  

 

Figure 35. Pyrimido[4,5-b]indoles 184 and 185.  

Gangjee et al.178 reported the pyrimido[4,5-b]indoles 184 and 185 (Figure 35) which 

vary in substitution at the N4-position. The 4-NH analog 184 was inactive in MDA-MB-

435 cell lines and in the microtubule depolymerization assay (Table 5). The N-methyl 

analog 185 is a colchicine-site agent, which inhibited cell proliferation about 4-fold less 

than CA4. Also, compound 185 circumvented clinically relevant mechanisms of tumor 

resitance of paclitaxel due to Pgp and III-tubulin.  
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Table 5. Effects of 184 and 185 on proliferation of MDA-MB-435 cells, microtubule 

depolymerization and [3H]-colchicine binding 

Compd  
IC50 ± SD  

(MDA-MB-435)  

EC50 microtubule 

depolymerization  

Inhibition of colchicine binding  

(% inhibition ± SD) at 5 µM 

184 
 

>40 µM  
 

185 14.7 ± 1.5 nM 105 ± 12 nM 84 ± 0.5  

CA4  3.4 ± 0.6 nM 13.0 nM 99 ± 0.2  

 

 

Figure 36. Series V. 

Compounds 1e‒3e (Figure 36) with variations at N4-position were proposed to 

improve the tubulin inhibitory activity of 185. Compound 1e with a larger ethyl group at 

the N4-position was designed to determine the effect of size at the N4-position on 

antitubulin activity. Compound 2e contains a 6-methoxy-tetrahydroquinoline moiety at 

the 4-position of the pyrimido[4,5-b]indole. It was designed to evaluate the effect of 

conformational restriction of the phenyl group on tubulin inhibition. The 4'-ethoxy analog 

3e was designed based on molecular modeling (Figure 37).  
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Figure 37. Stereoview. Superimposition of the docked conformation of 3e (white) 

overlaid with colchicine (red) in the colchicine-site of tubulin (PDB: 1SA0)183.  

Figure 37 shows the docked conformation178 of 3e (-7.75 kcal/mol) in the colchicine 

site of tubulin (PDB: 1SA0)183 obtained using MOE 2013.08.184 The oxygen atom of the 

4'-OEt group of 3e forms hydrogen bonding with Cys241 of tubulin. Also, the 4'-OEt 

group forms hydrophobic interactions with Val318 and Ile378, which were absent in 

colchicine and 185. Compound 3e was designed based on the hypothesis that the 

replacement of 4'-OMe of 185 with the larger 4'-OEt group would allow additional 

interactions with the hydrophobic residues in the colchicine-site of tubulin. 

Compound 1f (Figure 38) is designed by the bioisostere replacement of the 4'-OMe 

group in 185 with 4'-SMe group. This modification was found to improve antitubulin 

activity in the cyclopenta[d]pyrimidines185 and the furo[2,3-d]pyrimidines.186  
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Figure 38. Lead compound 185 and target compounds 1f‒3f (Series VI). 

Compounds 2f and 3f (Figure 38) with 2-Me and 2-H substitutions are designed to 

evaluate the importance of the 2-NH2 group in antitubulin activity. These substitutions 

are well tolerated and afforded increased antitubulin activity in pyrimidine-fused bicyclic 

systems.185, 186  

Bulk syntheses of potent tubulin inhibitors 183 and 185 were carried out for further 

preclinical evaluations. 

C. Selective inhibition of T.gondii thymidylate synthase  

Infection by the parasite T. gondii can lead to toxoplasmosis in immune 

compromised patients such as organ transplant, patients undergoing chemotherapy for 

cancer and HIV/AIDS patients.72  

 

Figure 39. Representative drugs in the treatment of T. gondii infection. 

Standard therapy for the treatment of toxoplasmosis involves a combination of sulfa 

drugs like sulfadiazine (Figure 39) and DHFR inhibitors such as pyrimethamine along 
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with folinic acid for rescue of bone marrow toxicity caused by pyrimethamine.187 

Pyrimethamine selectively targets T. gondii DHFR where as sulfadiazine inhibits 

dihydropteroate synthase (DHPS) which catalyzes the de novo folate biosynthesis, a 

pathway absent in humans. The current therapies are limited by drug intolerance,188, 189 

central nervous system (CNS)-related side effects190 associated with sulfonamides and 

treatment failures191 owing to resistance. Pyrimethamine with clindamycin therapy may 

be used an alternative in patients allergic to sulfa drugs.189 Although this therapy resulted 

in lower allergic reactions than pyrimethamine-sulfadiazine therapy, 30% of patients did 

not respond to the treatment.188 Drug resistance and treatment failures to these very 

similar first-line agents indicate an urgent need for new agents.  

The TS‒DHFR enzyme is crucial for dTMP synthesis in T. gondii and hence 

represents a valid target to combat T. gondii infection.76 However, inhibitors selective for 

T. gondii TS (tgTS) over human TS (hTS) are not known at the time this research project 

was conceived. This is mainly due to the significant homology between the active site 

residues of tgTS and hTS.78 Availability of selective tgTS inhibitors would avoid the 

aforementioned drawbacks associated with current therapies.  

C.1 Synthesis of 2-amino-4-oxo-5-thioaryl-9H-pyrimido[4,5-b]indoles as selective 

inhibitors of T. gondii thymidylate synthase  

 

Figure 40. 2-Amino-4-oxo-pyrimido[4,5-b]indoles 1g‒7g (Series VII). 
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Gangjee et al.192 serendipitously discovered 2-amino-4-oxo-5-arylthio-pyrimido[4,5-

b]indoles 1g‒6g (Figure 40) as selective inhibitors of tgTS. Remarkably, compounds 

1g‒4g displayed 10-fold selectivity for tgTS over hTS compared to 0.2- and 3-fold 

selectivities for clinically used raltitrexed and pemetrexed, respectively (Table 6). The 5-

thionaphthyl analogs 2g and 4g had low two-digit nanomolar tgTS inhibitory activities. 

Table 6. TS inhibitory activity of 1g‒6g 

Compd  
Human TS 

(M) (A)  

T. gondii TS 

(M) (B)  

Selectivity  

Ratio (A/B) 

1g  2.7 0.13 20.8 

2g 0.21 0.012 17.5 

3g 1.3 0.13 10 

4g 0.27 0.027 10 

5g 0.75  0.23  3.3  

6g  1.8 0.65 2.7 

Raltitrexed 0.38 1.8 0.2 

Pemetrexed 9.5 2.8 3.4 

 

Encouraged by the preliminary data, additional quantities of 1g‒6g were required for 

further preclinical evaluation including X-ray crystal and T. gondii culture studies and for 

pharmacokinetic studies. Compounds 1g‒6g have been previously synthesized albeit in 

poor yields (2‒6%) from commercially available starting materials.192 The unprecedented 

tgTS selectivity of 1g‒6g (Table 6) prompted the design of an efficient synthetic strategy 

for preparing these compounds. This synthetic strategy can also be utilized for preparing 

novel analogs related to Series VII. Compound 7g is one such analog which was designed 

based on molecular modeling (Figure 41).  
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Figure 41. Compounds 1g and 7g in the active site of tgTS. (A) Surface map of tgTS 

active site occupied by 1g (red) and 7g (yellow) (PDB: 4KY4)193. Hydrophobic and polar 

surfaces are colored green and magenta, respectively. (B) Key interactions between tgTS 

residues and 1g or 7g. 

Compounds 1g and 7g were docked in the X-ray crystal structure of tgTS (PDB: 

4KY4)193 using LeadIT.194 The 5-thiophenyl substitution of 1g accesses a hydrophobic 

pocket formed by Ile402, Leu516, Phe374 and Phe530 (Figure 41A). Since the phenyl 

ring does not occupy the large hydrophobic pocket, it was of interest to append a 4'-

phenoxy group in target compound 7g in an attempt to gain additional interactions with 

Phe374 and therefore improve the tgTS activity. Figure 41B provides key interactions 

made by 1g and 7g in the active site of tgTS. The 2-NH2 of both 1g and 7g forms 

hydrogen bonding with Ala609 and Asp513 of tgTS whereas the 3-NH forms hydrogen 

bonding with the Asp513. The tricyclic scaffold is stabilized by hydrophobic interaction 

with Leu516 and Trp403. Compound 7g forms additional hydrophobic interactions with 

Ile402, Phe374 and Phe520 and hydrogen bonding (indole NH) with Asn406. Also, the 

4'-phenoxy 7g would probe the hydrophobic pocket and thus help us know whether 

hydrophobic residues are involved in selectivity for tgTS over hTS.  

A B 
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Compounds 1g‒6g had poor water solubility and thus, to improve water-solubility, 

HCl salts of two most tgTS selective compounds, 1g and 2g, were also synthesized.   
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IV. CHEMICAL DISCUSSION 

Synthesis of 5-thioaryl-9H-pyrimido[4,5-b]indole-2,4-diamines 1a‒7a and lead 

compounds 1 and 2 

Target compounds 1a‒7a can be synthesized utilizing the synthetic procedure for 

lead compounds 1 and 2. However, the synthesis of 1 and 2 from commercially available 

1,2-dichloro-3-nitrobenzene required seven steps and had a mere 6% overall yield.125 

Hence, it was important to devise an efficient high-yielding strategy for the synthesis of 

target compounds 1a‒7a. It was our intention that the synthetic scheme devised should 

also be adaptable to gram-scale synthesis of lead compounds 1 and 2 for preclinical 

evaluation. 

 

Figure 42. Retrosynthesis of target compounds 1a‒7a. 

The synthesis of target compounds 1a‒7a was envisioned via a nucleophilic 

displacement reaction125 of 5-chloro- or 5-bromo-pyrimido[4,5-b]indoles of general 

structure A (Figure 42), which could be prepared by condensation125 of substituted 
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indoles B with chlorformamidine. Indoles B can in turn be synthesized via reductive 

cyclization125 of appropriately substituted nitrobenzenes C, which could be obtained by 

electrophilic aromatic substitution125 of 1,2-dichloro- or 1,2-dibromo-3-nitrobenzene D 

with malononitrile.  

In an effort to develop this method, initially the synthesis of lead compounds 1 and 2 

was undertaken (Scheme 33), with the plan to extend the new scheme, if successful, to 

the target compounds 1a‒7a, which contain electron-withdrawing or sterically 

demanding thioaryl groups at 5-position.    

Scheme 33. Efficient gram-scale synthesis of lead compounds 1 and 2 

 

Displacement of 1,2-dichloro-3-nitro-benzene 7 with the sodium salt of 

malononitrile anion provided 2-(2-chloro-6-nitrophenyl)malononitrile 186 (Scheme 33). 

Several reaction conditions such as varying the solvent (THF, DMF) and/or the base 

(potassium tert-butoxide, sodium hydride) and/or temperature (75 oC to 120 oC) were 

screened for this step. The reaction did not go to completion [monitored by thin‒layer 

chromatography (TLC)] when potassium tert-butoxide was employed as the base. Using 
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THF as solvent also did not result in complete utilization of the reactant 7 even after 48 h. 

With DMF/NaH as the solvent/base combination, reactions were performed at 

temperatures of 75 oC, 100 oC and 120 oC. Optimum temperature was found to be 100 oC 

for improved yields and less side products (based on TLC).  

Reductive cyclization of 186 using zinc dust in acetic acid furnished 2-amino-4-

chloro-1H-indole-3-carbonitrile 187 (Scheme 33). The 1H NMR of 187 showed the 

presence of the indole NH peak at 10.98 ppm and the 2-NH2 peak at 6.91 ppm and both 

these peaks exchanged in the presence of D2O. This confirmed the formation of the 

indole 187 and inturn indicated that the 2-chloro group in 7, and not the 3-chloro, was 

displaced by the malononitrile anion to provide 186. Cyclocondensation of 187 with 

carbamimidic chloride hydrochloride195 afforded the 2,4-diamino-5-chloro-pyrimido[4,5-

b]indole 188125 in 45% yield. The reactant 187 was completely utilized after 2 h and two 

spots (1:1 ratio) were observed on TLC (5% MeOH in CHCl3). It was assumed that one 

of the products might be the uncyclized analog of 188. Upon prolonging the reaction time 

to 20 h, only one spot was observed on TLC indicating that the other spot initially 

observed was probably an uncyclized analog of 188.  

This synthetic strategy offers an effective route for the synthesis of the valuable 5-

chloro intermediate 188 from 1,2-dichloro-3-nitro-benzene 7. It provided 188 in three 

steps with an overall yield of 22% compared to the reported procedure125 which gave 188 

in six steps with 5% overall yield. Compound 188 was then treated with aryl thiols 189 

and 190 to provide 1 g of 1 and 2 respectively.125 
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Scheme 34. Attempted synthesis of target compound 1a 

 

However, similar reaction of 188 with arylthiols containing electron-withdrawing 

substituents (e.g. 191) resulted in no SNAr reaction (e.g. 1a) (Scheme 34). This decreased 

reactivity can be attributed to the reduced nucleophilicity of these arylthiols due to the 

negative inductive effect associated with the electron withdrawing substituents that make 

the electrons on the sulfur less available for a nucleophilic attack. In addition to this, the 

5-chloro group in 188 is not a good leaving group in the SNAr reaction first due to the 

absence of activation, and second due to the presence of an indole nitrogen meta to the 

chlorine which can donate electrons into the C-ring making it electron rich, and hence, 

making the 5-carbon less electrophilic. One of the ways to facilitate the reaction between 

188 and 191 is to employ metal-catalyzed coupling.173, 196, 197 Copper-catalyzed coupling 

(CuI/K2CO3/DMF)173, 197 between 188 and 191 did not give any new product (based on 

TLC). Palladium-catalyzed coupling173, 196 between 188 and electron-withdrawing 

arylthiols such as 191 also failed (Scheme 34). Another alternative for improving the 

reactivity is by increasing the electrophilicity of the 5-carbon of 188, which can be 



www.manaraa.com

 88 

obtained by replacing the 5-chloro of 188 with a 5-bromo group. The bromo group at the 

5-position is easier to displace than a chloro group because of its higher electronegativity.  

Scheme 35. Synthesis of target compounds 1a–6a 

 

Thus, synthesis of target compounds 1a–6a started from 2,3-dibromonitrobenzene 

192198 (Scheme 35) that was synthesized by nitration of 1,2-dibromobenzene (the major 

product is 1,2-dibromo-4-nitrobenzene; purification was accomplished by column 

chromatography). Displacement of the 2-bromo of 192 with malononitrile using sodium 

hydride provided 193. The use of potassium tert-butoxide resulted in only 60% utilization 

of 192. Reductive cyclization125 of 193 using zinc dust furnished 194, which upon 

cyclocondensation with carbamimidic chloride hydrochloride195 afforded the 2,4-

diamino-5-bromo-pyrimido[4,5-b]indole 195. Ullmann coupling of 195 with appropriate 

arylthiols 191, 196‒200 using CuI, K2CO3 under microwave conditions furnished the 

target compounds 1a–6a in 21‒64% yield. Column chromatography of 1a–6a should not 
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be carried out using a CombiFlash® Rf system because the compounds stick to the silica 

gel and do not elute out. Ullmann coupling of 195 and 201 using similar conditions 

resulted in partial utilization of the reactant 195 and/or formation of multiple side 

products (TLC). Hence, it was decided to perform Ullmann coupling either at lower 

temperatures or by using other copper catalysts (Scheme 36).  

Scheme 36. Synthesis of target compound 7a 

 

Ullmann coupling of 195 and 201 (Scheme 36) at lower temperatures (100‒145 oC) 

resulted in only 50‒60% utilization of reactant 195 (based on TLC). As the strategy of 

coupling at lower temperatures did not work, the next option considered was to attempt 

other copper catalysts. Copper catalysts Cu2O/CuBr have been successfully employed199 

for Ullmann coupling in the synthesis of nolatrexed. Ullmann coupling of 195 and 201 

using CuBr/Cu2O resulted in 7a in 31% yield (Scheme 36).  

Synthesis of N,N-disubstituted-5-methylfuro[2,3-d]pyrimidin-4-amines 1b‒4b and 

1e‒5e 

Target compounds 1b–4b were synthesized as described in Scheme 37. Compound 

203143 was obtained by reacting hydroxyacetone 202 with malononitrile in the presence 

of triethylamine and was used without purification for the next step. Treatment of 203 
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with formamidine (obtained by stirring formamidine hydrochloride with sodium 

ethoxide) in ethanol provided 4-amino-5-methyl-furo[2,3-d]pyrimidine 204.174 1H NMR 

of 204 showed the presence of the 4-NH2 as a broad singlet at 7.02 ppm and the C2-CH as 

a singlet at 8.13 ppm. Ullmann coupling of 204 and 4-iodo anisole 205 using copper 

iodide and L-proline afforded 181 in 33% yield.174 N4-Alkylation174 of 181 with alkyl 

iodides 206–209 furnished 1b–4b in 57-85% yield. 

Scheme 37. Synthesis of target compounds 1b–4b 

 

Scheme 38. Synthesis of target compound 1c 
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Ullmann coupling200 of 204 and p-ethyl phenyl iodide 210 (Scheme 38) using copper 

iodide and L-proline afforded 213 in 29% yield. Compound 213 was N4-methylated using 

dimethyl sulfate to furnish target compound 1c in 53% yield. Ullmann coupling of 204 

with aryl iodides 211 and 212 using copper iodide and L-proline provided 214 and 215 in 

poor yields. In these reactions, it was observed that 50-60% of 204 was unreacted (based 

on TLC). Using higher (2‒3) equivalents of CuI and/or L-proline did not improve the 

reactivity of 204. The reactivity of 204 (or the reaction yield) also did not improve under 

higher reaction temperatures (120‒150 oC) and/or microwave conditions. To improve the 

reactivity of 204 as well as the reaction yield, it was decided to change the ligand “L-

proline” and/or the catalyst “copper iodide”. Guo, X. et al.201 successfully utilized 

pipecolinic acid as the ligand for N-arylation of electron-deficient aromatic systems. 

Hence, pipecolinic acid, instead of L-proline, was employed as the ligand for Ullmann 

coupling of 204 and aryl iodides 211 or 212 (Scheme 39). 

Scheme 39. Synthesis of target compounds 2c–5c 
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Ullmann coupling201 of 204 with aryl iodides 211 and 212 using pipecolinic acid as 

the ligand provided significantly better yields for 214 and 215 (Scheme 39), respectively, 

than when L-proline was the ligand. Similarly, treatment of 204 with p-iodo anilines 

216202 and 217202 afforded 218 and 219, respectively in moderate yields. N4-Methylation 

of 214, 215 and 219 using dimethyl sulfate at room temperature afforded target 

compounds 2c, 5c and 4c, respectively, in 43-51% yield. Similar conditions for the N4-

methylation of 218 resulted in the methylation of both 4- and 4'-nitrogens to give the 4'-

NMe2 analog 4c instead of desired compound 3c. Reaction at rt or the use of more than 

one equivalent of NaH gave predominantly 4c. Hence, compound 218 was treated with 

NaH (1.1 equivalents) and dimethyl sulfate (1.1 equivalents) at -10‒0 oC to furnish the 

desired compound 3c in 20% yield and 4c in 30% yield.  

Retrosynthetic strategies for 2,4,5-trisubstituted pyrimido[4,5-b]indoles 

 

Figure 43. Retrosynthetic strategies for target compounds 1d–6d, 1e–3e and 1f–3f. 
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The synthesis of target compounds 1d–6d, 1e–3e and 1f–3f was envisioned via 

nucleophilic displacement reactions125 of 4-chloro-pyrimido[4,5-b]indoles with general 

structure A (Figure 43), which could be prepared from 4-oxo- pyrimido[4,5-b]indoles B. 

Compounds of general structure B can be synthesized using either of the two strategies. 

Strategy 1 involves condensation125 of substituted indoles D with chlorformamidine type 

reagents C. Indoles D can be synthesized via reductive cyclization125 of appropriately 

substituted nitrobenzenes E, which could be obtained by treating125 o-chloro-

nitrobenzenes D with malononitrile. Alternatively, 4-oxo- pyrimido[4,5-b]indoles B can 

be prepared via strategy II that utilizes a Fischer indole synthesis of G from aryl 

hydrazines H and cyclohexanones I. 

Synthesis of N4-aryl-5-chloro-2,4-diamino-pyrimido[4,5-b]indoles 1d‒6d 

Disconnection strategy I (Figure 43) was utilized for the synthesis of target 

compounds 1d–6d. Displacement of the 2-chloro group of 1,2-dichloro-3-nitro-benzene 7 

by the ethyl cyanoacetate anion provided 8125 as a viscous yellow liquid in 96% yield 

(Scheme 40). Reduction of the nitro group of 8 followed by cyclization furnished 9125 as 

a pink solid in 74% yield.125 1H NMR indicated the formation of the indole 9: a 

one‒proton singlet at 10.97 ppm (indole NH) and a two‒proton broad singlet at 6.87 ppm 

(2-NH2 group) and both these peaks exchanged in the presence of D2O. 

Cyclocondensation of 9 with carbamimidic chloride hydrochloride195 afforded the 

tricyclic compound 10125 after workup as a pale brown solid in 64% yield. Protection of 

the 2-amino group of 10 using pivalic anhydride provided 220125 in 60% yield, better 

than the reported method125 which utilized pivalic anhydride, 4-(N,N-

dimethylamino)pyridine (DMAP) and triethylamine to give 220 in 40% yield. The 
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pivaloyl protection of the 2-amino group increases the solubility of the compound in 

organic solvents for the chlorination step; a direct chlorination of unprotected 10 with 

phosphorus oxychloride resulted in no reaction. 

Scheme 40. Synthesis of target compounds 1d–6d 

 

Compound 221125 was obtained by treating 220 with phosphorus oxychloride 

(Scheme 40). Displacement203 of the 4-chloro group in 221 with N-methyl anilines 222–

226 or 6-methoxy-1,2,3,4-tetrahydroquinoline 227 followed by base‒mediated 

deprotection of the 2-amino group provided target compounds 1d–6d respectively in 

52‒67% yield.182 The amines 222–227 regiospecifically displaced the 4-chloro of 221 
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rather than the 5-chloro group because the 4-position is more electrophilic than the 5-

position owing to the presence of the adjacent 3-nitrogen atom. 

Synthesis of 2,4-disubstituted-9H-pyrimido[4,5-b]indole-4-amines 1e‒3e and 1f‒3f 

Target compounds 1e‒3e and 1f‒3f were synthesized by employing the 

disconnection strategy II (Figure 43), which involves a “Fisher indole synthesis” as the 

key step in the construction of pyrimido[4,5-b]indole ring.    

Scheme 41. Synthesis of target compounds 1e and 2e 
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Displacement of the 6-chloro of 2-amino-6-chloropyrimidin-4(3H)-one 228 with 

hydrazine using a reported method204 afforded 229 in 46% yield (Scheme 41). Fischer 

indole cyclization of the 6-hydrazinopyrimidin-3-one 229 with cyclohexanone 230 

furnished the tricyclic scaffold 231.178 This reaction required reflux in diphenyl ether 

(250 oC) to facilitate the cyclization to 231. The 1H NMR of 231 showed the presence of 

a D2O-exchangeable indole NH peak at 10.50 ppm and four pairs of aliphatic CH2 peaks 

at 1.64‒1.69, 2.42 and 2.53 ppm. This structural data confirmed the formation of the 

indole 231. The partially saturated ring in 231 was oxidized using 10% Pd/C to provide 

232178 in 57% yield. The 2-amino moiety of 232 was pivaloyl protected to give 233,178 

which upon chlorination afforded the common intermediate 234.178 Attempts to displace 

the 4-chloro of 234 with anilines 235205 and 6-methoxy-1,2,3,4-tetrahydroquinoline 227 

in isopropanol at reflux were unsuccessful. After 72 h, less than 5% of 234 was utilized 

(based on TLC). Hence, n-butanol, that has higher boiling point than isopropanol, was 

chosen as the solvent for the synthesis of 1e and 2e. Compound 234 was treated with 235 

and 227 in n-butanol to afford 1e178 and 2e, respectively, after simultaneous deprotection 

of the 2-amino group.  

Scheme 42. Synthesis of target compound 3e  
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Compound 3e was obtained from nucleophilic displacement of 234 with 4-ethoxy-N-

methylaniline 236206 and simultaneous deprotection of the 2-amino group (Scheme 

42).178 Unlike the displacement of the 4-chloro of 234 with 235 and 227 (Scheme 41) 

which required heating in n-butanol at reflux, the displacement of 234 with 236 worked 

in isopropanol at reflux. This can be attributed to lower reactivity of the sterically 

hindered amines 235 and 227 compared to 236.  

Scheme 43. Synthesis of target compound 1f 

 

Displacement of the 4-chloro of 234 with 4-thiomethyl-N-methylaniline 237206 

followed by simultaneous deprotection of the 2-amino group in n-butanol at reflux 

provided 1f in 72% yield (Scheme 43).178 n-Butanol was chosen as the solvent for 1f 

because the reaction of 234 with 237 in isopropanol at reflux resulted in less than 5% 

completion after 72 h (based on TLC).  

The synthesis of target compound 2f commenced from commercially available 1-

chloro-2-nitrobenzene 238 (Scheme 44). Displacement of the chloro of 238 by the ethyl 

cyanoacetate anion provided 239 in 86% yield. Reduction of the nitro group of 239 

followed by cyclization furnished 18 in a yield of 74%.129 Bubbling anhydrous HCl gas 

through a solution of 18 in acetonitrile afforded 21.130 Compound 21 was then treated 

with aqueous NaOH solution in ethanol at reflux to obtain 23.130 Proton NMR of 23 
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confirmed the formation of 2-methyl-4-oxo-pyrimido[4,5-b]indole: a three-proton singlet 

(2-Me) at 2.41 ppm, two D2O-exchangeable singlets (3-NH and 9-NH) at 11.98 ppm and 

12.12 ppm and 4 aryl protons (between 7.18 and 7.94 ppm). Compound 23 was 

chlorinated178 using phosphorus oxychloride to afford 240 in 79% yield. Displacement of 

the 4-chloro of 240 with 4-methoxy-N-methyl aniline 241 provided target compound 2f 

in 78% yield. 

Scheme 44. Synthesis of target compound 2f  

 

The target compound 3f was synthesized using Scheme 45. 2-Amino-indole-3-nitrile  

18 (Scheme 44) was reacted with neat formamide to afford pyrimido[4,5-b]indole 242 

(Scheme 45).129 The 4-oxo of 242 was converted to the 4-chloro 243 by treating with 

phosphorus oxychloride. Nucleophilic displacement of 243 with 4-methoxy-N-methyl 

aniline 241 provided target compound 3f in 38% yield.  
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Scheme 45. Synthesis of target compound 3f 

 

Synthesis of 2-amino-4-oxo-5-thioaryl-9H-pyrimido[4,5-b]indoles 1g‒7g 

Scheme 46. Synthesis of 1g‒6g and novel compound 7g 

 

Compounds 1g‒6g have been previously synthesized albeit in very poor yields 

(2‒6%) from commercial starting materials.192 To improve the yield, Ullmann coupling197 

of 10 with aryl thiols 244−249 was attempted with copper iodide as the catalyst (Scheme 

46). Several temperatures (145‒200 °C), solvents (DMF, NMP) with/without ligand (L-

proline) were screened. The optimal method is described in Scheme 46. Compound 10125 

was obtained in 45% yield from commercial starting materials in three steps (Scheme 
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40).  Ullmann coupling of 10 with 244−246, 248−250 using CuI and L-proline at 180 °C 

under microwave conditions provided 1g−3g and 5g−7g in 47-62% yield. Similar 

displacement of 10 with 1-naphthyl thiol 247 was unsuccessful probably due to steric 

hindrance. Column chromatography of 1g−3g and 5g−7g should not be carried out with a 

CombiFlash® Rf system because the compounds stick to the silica gel and do not elute 

out. Optimization of this reaction resulted in the synthesis of 1g−3g, 5g and 6g in 

23‒28% overall yield from commercial starting materials, which is a significant 

improvement over the previous method which gave a mere 2‒6% yield.  

Scheme 47. Synthesis of 1g·HCl and 2g·HCl 

 

Hydrochloride salts 1g·HCl and 2g·HCl were synthesized to improve the water 

solubility of 1g and 2g (Scheme 47). The HCl salt of 1g (1g·HCl) was obtained by 

bubbling anhydrous HCl gas through a solution of 1g in chloroform, ethyl acetate, diethyl 

ether and methanol. The HCl salt of 2g (2g·HCl) was prepared by treating 2g in DMF, 

dioxane and diethyl ether with anhydrous HCl gas.  
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V. EXPERIMENTAL 

All evaporations were carried out in vacuum with a rotary evaporator. Analytical 

samples were dried in vacuo (0.2 mm Hg) in a CHEM-DRY drying apparatus over P2O5 at 

50 °C. Thin‒layer chromatography (TLC) was performed on Whatman® Sil G/UV254 silica 

gel plates and the spots were visualized by irradiation with ultraviolet light (254 and 366 

nm). Proportions of solvents used for TLC are by volume. All analytical samples were 

homogeneous on TLC in at least two different solvent systems. Column chromatography was 

performed on a 70−230 mesh silica gel (Fisher Scientific) column. Flash chromatography 

was carried out using CombiFlash® Rf 200 (Teledyne ISCO) automated flash 

chromatography system with pre-packed RediSep® Rf normal‒phase flash columns 

(230−400 mesh). The amount (weight) of silica gel for column chromatography was in the 

range of 50−100 times the amount (weight) of the crude compounds being separated. 

Columns were wet-packed with appropriate solvent unless specified otherwise. Melting 

points were determined using a digital MEL-TEMP II melting point apparatus with FLUKE 

51 K/J electronic thermometer or using an MPA100 OptiMelt automated melting point 

system and are uncorrected. Nuclear magnetic resonance spectra for proton (1H NMR) were 

recorded on Bruker Avance II 400 (400 MHz) and 500 (500 MHz) NMR systems and were 

analyzed using MestReC NMR data processing software. The chemical shift (δ) values are 

expressed in ppm (parts per million) relative to tetramethylsilane as an internal standard: s, 

singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad singlet; exch, protons 

exchangeable by addition of D2O.  

Elemental analyses or high-performance liquid chromatography (HPLC)/mass analysis 

were used to determine the purities of the target compounds. Elemental analyses were 
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performed by Atlantic Microlab, Inc., Norcross, GA. Elemental compositions are within 

±0.4% of the calculated values and indicate >95% purity. Fractional moles of water or 

organic solvents frequently found in some analytical samples could not be prevented despite 

24−48 h of drying in vacuo and were confirmed where possible by their presence in the 1H 

NMR spectra. Mass spectrum data were acquired on an Agilent G6220AA TOF LC/MS 

system using the nano ESI (Agilent chip tube system with infusion chip). HPLC analysis was 

performed on a Waters HPLC system using XSelect® CSH C18 column. Peak area of the 

major peak w.r.t other peaks was used to determine the purity. All solvents and chemicals 

were purchased from Sigma‒Aldrich Co. or Fisher Scientific Inc. and were used as received. 

 

2-(2-Chloro-6-nitrophenyl)malononitrile (186).  

To an ice-cold solution of malononitrile (10.3 g, 156 mmol) in anhydrous DMF (500 mL) 

under argon atmosphere was added sodium hydride (3.75 g, 156 mmol). The resulting 

white suspension was stirred for 15 min and then 1,2-dichloro-3-nitrobenzene 7 (10 g, 52 

mmol) was added. An orange color was observed within 2-3 minutes after adding 7. The 

mixture was stirred at 100 °C for 4 h. After cooling the reaction mixture, 200 mL H2O 

was added, and the aqueous mixture was acidified to pH 2.0 with conc. HCl. The mixture 

was extracted with diethyl ether (500 mL × 3) and the combined organic phases were 

dried using anhydrous sodium sulfate and concentrated to give 186 as dark brown oil. 

TLC Rf = 0.72 (hexane/EtOAc, 1:1); 1H NMR (500 MHz, DMSO-d6):  = 6.22 (s, 1H, 

CH); 7.72‒7.75 (m, 1H, Ar); 7.92‒7.93 (m, 1H, Ar); 8.18‒8.20 (m, 1H, Ar). This 

material was used directly for the next step without further purification. 
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2-Amino-4-chloro-1H-indole-3-carbonitrile (187).  

A solution of 186 (1 g, 4.5 mmol) in glacial acetic acid (60 mL) was treated with 3 g of 

zinc dust. The mixture was stirred at 60 °C for 45 min and then recharged with zinc dust 

(1 g). After heating for another 105 min, the mixture was filtered through a pad of Celite. 

The pad was washed with 60 mL AcOH, the filtrate was concentrated and then 

neutralized with saturated Na2CO3 solution. The resulting precipitate was then purified by 

column chromatography, eluting sequentially with 0% and 1% MeOH in CHCl3. 

Fractions containing the product (TLC) were pooled and evaporated to afford 490 mg 

(49%, two steps) of 187 as a pink solid. TLC Rf = 0.25 (CHCl3/MeOH, 10:1 with 2 drops 

of conc. NH4OH); mp 240.1‒240.9 °C. 1H NMR (500 MHz, DMSO-d6):  = 6.84‒6.88 

(m, 1H, Ar); 6.91 (br, 2H, 2-NH2, exch); 6.92‒6.94 (m, 1H, Ar); 7.07‒7.09 (m, 1H, Ar); 

10.98 (s, 1H, 1-NH, exch). Elemental analysis calculated (%) for 

C9H6ClN3∙0.09CH3COCH3: C, 56.56; H, 3.35; N, 21.35; Cl, 18.01. Found: C, 56.36; H, 

3.39; N, 21.31; Cl, 17.94. 

 

5-Chloro-9H-pyrimido[4,5-b]indole-2,4-diamine (188).  

Compound 187 (0.8 g, 4.16 mmol), carbamimidic chloride hydrochloride195 (0.8 g) and 

methyl sulfone (8 g, 10 equivalents) were taken in a 100 mL evaporation flask and was 

heated at 120 °C for 20 h. About 10 mL of ammonia in methanol was added to neutralize 

the reaction mixture. Solvent was removed under reduced pressure and the product was 

purified by column chromatography, sequentially eluting with 1% and 5% methanol in 

chloroform. Fractions containing the product (TLC) were pooled and evaporated to afford 

0.57 g (58%) of 188 as a brown solid. TLC Rf = 0.53 (CHCl3/MeOH, 5:1 with 2 drops of 
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conc. NH4OH); mp 243.2‒243.8 oC (lit.125 245.2‒246.3 oC). 1H NMR (400 MHz, DMSO-

d6):  = 6.07 (s, 2H, 4-NH2, exch); 6.80 (bs, 2H, 2-NH2, exch); 7.06‒7.13 (m, 2H, Ar); 

7.21‒7.23 (m, 1H, Ar); 11.49 (s, 1H, 9-NH, exch). 1H NMR agreed well with the 

literature reported125 values.  

 

General procedure for the synthesis of 5-(substituted phenylthio)-9H-pyrimido[4,5-

b]indole-2,4-diamines 1 and 2.  

Compound 188 (50 mg, 1 equivalent), potassium carbonate (4 equivalents) and 

appropriate aryl thiol (4 equivalents) were weighed and added to a Biotage® microwave 

vial. N-methyl pyrrolidine-2-one (NMP, 3 mL) was added as solvent and the vial was 

sealed. The reaction was run in a Biotage® initiator at very high absorption for 30 

minutes at 250 C. The reaction mixture was transferred to the top of a 15 g silica gel 

column and was sequentially eluted with 1% and 3% methanol in chloroform. Fractions 

containing the product (TLC) were pooled and evaporated to give the desired product 

which was further purified by washing with diethyl ether.  

 

5-(Phenylthio)-9H-pyrimido[4,5-b]indole-2,4-diamine (1).  

Using the general procedure described above, compound 188 (50 mg, 0.22 mmol) was 

treated with benzene thiol 189 (95 mg, 0.86 mmol) to yield 60 mg (90%) of 1 as a brown 

solid. TLC Rf = 0.62 (CHCl3/MeOH, 5:1 with 2 drops of conc. NH4OH); mp 251.1-252.0 

C (lit.125 251 oC). 1H NMR (400 MHz, DMSO-d6):  = 6.02 (s, 2H, 4-NH2, exch); 

7.03‒7.04 (m, 2H, Ar); 7.13‒7.15 (m, 1H, Ar); 7.22‒7.25 (m, 3H, Ar), 7.24 (s, 2H, 2-

NH2, exch); 7.32‒7.33 (m, 1H, Ar); 7.40‒7.42 (m, 1H, Ar); 11.48 (s, 1H, 9-NH, exch). 
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Elemental analysis calculated (%) for C16H13N5S∙0.47CH3OH: C, 61.35; H, 4.65; N, 

21.72; S, 9.95. Found: C, 61.32; H, 4.41; N, 21.66; S, 9.89. 1H NMR agreed well with the 

literature reported125 values. 

 

5-(4-Methylphenylthio)-9H-pyrimido[4,5-b]indole-2,4-diamine (2).  

Using the general procedure described above, compound 188 (50 mg, 0.22 mmol) was 

treated with p-toluene thiol 190 (95 mg, 0.86 mmol) to provide 59 mg (86%) of 2 as a 

brown solid. TLC Rf = 0.60 (CHCl3/MeOH, 5:1 with 2 drops of conc. NH4OH); mp >250 

oC (lit.125 >250 oC). 1H NMR (400 MHz, DMSO-d6):  = 2.20 (s, 3H, CH3), 6.03 (bs, 2H, 

4-NH2, exch), 6.96‒6.98 (m, 2H, Ar), 7.06‒7.08 (m, 2H, Ar), 7.18‒7.22 (m, 1H, Ar), 7.20 

(bs, 2H, 4-NH2, exch), 7.29‒7.31 (m, 1H, Ar), 7.37‒7.39 (m, 1H, Ar), 11.47 (s, 1H, 9-

NH, exch). Elemental analysis calculated (%) for C17H15N5S: C, 63.53; H, 4.70; N, 21.79; 

S, 9.98. Found: C, 63.13; H, 4.85; N, 21.51; S, 9.87. 1H NMR agreed well with the 

literature reported125 values. 

 

2-Amino-4-bromo-1H-indole-3-carbonitrile (194).  

To an ice-cold solution of malononitrile (4.76 g, 72 mmol) in anhydrous DMF (500 mL) 

under argon atmosphere was added sodium hydride (2.6 g, 104 mmol). Thus formed 

white suspension was stirred for 15 min and then 1,2-dibromo-3-nitrobenzene 192198 (10 

g, 36 mmol) was added. Orange color was observed within 2-3 minutes after adding 192. 

The mixture was stirred at 100 °C for 4 h. After cooling the reaction mixture, 200 mL 

H2O was added, and the resulting aqueous mixture was acidified to pH 2.0 with conc. 

HCl. The mixture was extracted with diethyl ether (500 mL × 3) and then the combined 
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organic phases were dried using anhydrous sodium sulfate and concentrated to give (2-

Bromo-6-nitrophenyl)-malononitrile 193 as dark-brown oil. TLC Rf = 0.42 

(CHCl3/MeOH, 10:1); 1H NMR (400 MHz, DMSO-d6):  = 6.18 (s, 1H, CH); 7.62‒7.66 

(m, 1H, Ar); 8.07‒8.09 (m, 1H, Ar); 8.19‒8.21 (m, 1H, Ar). The material was used 

directly for the next step. 

 A solution of 193 (3.92 g, 14.6 mmol) in glacial acetic acid (500 mL) was treated 

with a single charge of zinc dust (6.84 g, 2 parts by weight). The mixture was stirred at 

60 °C for 45 min, then recharged with zinc dust (3.92 g, 1 part by weight). After heating 

for another 105 min, the mixture was filtered through a pad of Celite. The pad was 

washed with glacial acetic acid, the filtrate was concentrated and then washed with 

saturated Na2CO3 solution. The precipitate was collected and then dissolved in methanol. 

Silica gel (5 g) was added to make the plug and was then purified by column 

chromatography, eluting sequentially with 0% and 1% MeOH in CHCl3. The fractions 

containing the pure product (TLC) were pooled and evaporated to give 2.52 g of 197 as a 

pink solid. The overall yield from 192 to 194 was 60%. TLC Rf = 0.25 (CHCl3/MeOH, 

10:1 with 2 drops of conc. NH4OH); mp 231.1‒231.9 oC. 1H NMR (400 MHz, DMSO-

d6):  = 6.78‒6.82 (m, 1H, Ar); 6.89 (bs, 2H, NH2, exch); 7.07‒7.08 (m, 1H, Ar); 

7.10‒7.12 (m, 1H, Ar); 10.98 (s, 1H, NH, exch). Elemental analysis calculated (%) for 

C9H6BrN3: C, 45.79; H, 2.56; N, 17.80; Br, 33.84. Found: C, 45.89; H, 2.59; N, 17.57; 

Br, 33.56. 
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5-Bromo-9H-pyrimido[4,5-b]indole-2,4-diamine (195).  

A mixture of 2-amino-4-bromo-1H-indole-3-carbonitrile 194 (3 g, 12.7 mmol), 

carbamimidic chloride hydrochloride195 (1.6 g, 13.9 mmol) and methyl sulfone (30 g) 

was stirred and stirred at 120 °C for 8 h, after which it was recharged with carbamimidic 

chloride hydrochloride195 (1.6 g, 13.9 mmol) and stirred for another 14 h. The reaction 

mixture was cooled and 50 mL of ammonia in methanol was added to neutralize the 

reaction mixture. Solvents were evaporated and the crude mixture was purified by 

column chromatography, eluting sequentially with 1% and 5% methanol in chloroform. 

Fractions containing the desired product (TLC) were pooled and evaporated to afford 

2.16 g (61%) of 195 as an off-white solid. TLC Rf = 0.27 (CHCl3/MeOH, 10:1 with 2 

drops of conc. NH4OH); mp 239.8‒240.1 oC. 1H NMR (400 MHz, DMSO-d6):  = 6.05 

(bs, 2H, 2-NH2, exch); 6.95 (br, 2H, 4-NH2, exch); 7.01‒7.05 (m, 1H, Ar); 7.24‒7.26 (m, 

2H, Ar); 11.49 (br, 1H, 9-NH, exch). HRMS (ESI): m/z calculated for C10H8BrN5 + H+ 

[M+H+]: 278.0036, 280.0016. Found: 278.0029, 280.0005. 

 

General procedure for the synthesis of 5-(substituted phenylthio)-9H-pyrimido[4,5-

b]indole-2,4-diamines 1a‒6a.  

Compound 195 (1 equivalent), appropriate aryl thiol (4 equivalents), copper iodide (4 

equivalents) and potassium carbonate (8 equivalents) were added to a Biotage® 

microwave vial. DMF (3 mL) was added as the solvent and the vial was sealed. The 

reaction was run in a Biotage® Initiator at 180 C for 4.5‒6.5 h (depending on the aryl 

thiol). After cooling to room temperature, silica gel (0.3 g) was added and DMF was 

removed under reduced pressure and the crude product was purified by column 



www.manaraa.com

 108 

chromatography, sequentially eluting with 1%, 2% and 3% methanol in chloroform. 

Fractions containing the product (TLC) were pooled and evaporated to afford the 

product. 

 

5-(4-Fluorophenylthio)-9H-pyrimido[4,5-b]indole-2,4-diamine (1a).  

Using the general procedure described above, the reaction of 195 (40 mg, 0.14 mmol) 

with 4-fluorophenylthiol 191 (0.06 mL, 0.56 mmol), copper iodide (110 mg, 0.56 mmol) 

and potassium carbonate (159 mg, 1.12 mmol) for 6.5 hours afforded 33 mg (64%) of 1a 

as a brown solid. TLC Rf = 0.65 (CHCl3/MeOH, 5:1 with 2 drops of conc. NH4OH); mp 

267.9‒268.9 oC. 1H NMR (400 MHz, DMSO-d6):  = 6.08 (s, 2H, 2-NH2, exch), 

7.11‒7.41 (m, 9H, Ar and 4-NH2), 11.52 (s, 1H, 9-NH, exch). Elemental analysis 

calculated (%) for C16H12FN5S∙0.26CH3OH: C, 58.52; H, 3.94; N, 20.99; S, 9.61; F, 5.69. 

Found: C, 58.35; H, 3.85; N, 21.06; S, 9.84; F, 5.54. 

 

5-(4-Trifluoromethylphenylthio)-9H-pyrimido[4,5-b]indole-2,4-diamine (2a).  

Using the general procedure described above, the reaction of 195 (50 mg, 0.18 mmol), 4-

trifluoromethylphenylthiol 196 (0.2 mL, 0.72 mmol), copper iodide (137.5 mg, 0.72 

mmol) and potassium carbonate (198.75 mg, 1.44 mmol) for 6.5 hours afforded 32 mg 

(46%) of 2a as a brown solid. TLC Rf = 0.65 (CHCl3/MeOH, 5:1 with 2 drops of conc. 

NH4OH); mp >250 oC. 1H NMR (400 MHz, DMSO-d6):  = 6.04 (s, 2H, 2-NH2, exch); 

7.12‒7.29 (d, 4H, Ar); 7.35‒7.48 (m, 3H, Ar and 4-NH2); 7.59‒7.61 (d, 2H, Ar); 11.57 (s, 

1H, 9-NH, exch). Elemental analysis calculated (%) for C17H12F3N5S∙0.32CH3OH: C, 
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53.94; H, 3.47; N, 18.16; S, 8.32; F, 14.78. Found: C, 54.25; H, 3.32; N, 17.96; S, 8.32; 

F, 14.55. 

 

5-(m-Tolylthio)-9H-pyrimido[4,5-b]indole-2,4-diamine (3a).  

Using the general procedure described above, the reaction of 195 (50 mg, 0.175 mmol) 

with m-toluene thiol 197 (0.09 mL, 0.7 mmol), copper iodide (137.5 mg, 0.7 mmol) and 

potassium carbonate (198.7 mg, 1.4 mmol) for 5.5 hours afforded 18 mg (31%) of 3a as a 

brown solid. TLC Rf = 0.65 (CHCl3/MeOH, 5:1 with 2 drops of conc. NH4OH); mp 

228.0‒228.5 oC. 1H NMR (400 MHz, DMSO-d6):  = 2.19 (s, 3H, 3'-Me), 6.04 (s, 2H, 2-

NH2, exch), 6.75‒6.77 (m, 1H, Ar), 6.93‒6.97 (m, 3H, Ar and 4-NH2), 7.11‒7.24 (m, 3H, 

Ar), 7.29‒7.32 (m, 1H, Ar), 7.39‒7.41 (m, 1H, Ar), 11.49 (s, 1H, 9-NH, exch). Elemental 

analysis calculated (%) for C17H15N5S∙0.28CH3OH: C, 68.67; H, 6.44; N, 14.13; S, 9.05. 

Found: C, 68.61; H, 6.45; N, 13.79; S, 9.05.  

 

5-(o-Tolylthio)-9H-pyrimido[4,5-b]indole-2,4-diamine (4a).  

Using the general procedure described above, the reaction of 195 (50 mg, 0.175 mmol) 

with o-toluene thiol 198 (0.09 mL, 0.7 mmol), copper iodide (137.5 mg, 0.7 mmol) and 

potassium carbonate (198.7 mg, 1.4 mmol) for 5.5 hours afforded 18 mg (31%) of 4a as a 

brown solid. TLC Rf = 0.65 (CHCl3/MeOH, 5:1 with 2 drops of conc. NH4OH); mp 

decomposes at 284.7‒285.8 oC. 1H NMR (400 MHz, DMSO-d6):  = 2.39 (s, 3H, 2'-Me), 

6.08 (s, 2H, 2-NH2, exch), 6.43‒6.45 (d, 1H, Ar), 6.95‒7.07 (m, 3H, Ar), 7.23‒7.25 (m, 

4H, Ar and 4-NH2), 7.41‒7.43 (m, 1H, Ar), 11.53 (s, 1H, 9-NH, exch). Elemental 
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analysis calculated (%) for C17H15N5S∙0.34CH3OH: C, 62.67; H, 4.96; N, 21.08; S, 9.65. 

Found: C, 62.35; H, 4.69; N, 21.23; S, 9.88. 

 

5-(3,4-Dimethylphenylthio)-9H-pyrimido[4,5-b]indole-2,4-diamine (5a).  

Using the general procedure described above, the reaction of 195 (40 mg, 0.14 mmol) 

with 3,4-dimethylphenylthiol 199 (0.07 mL, 0.56 mmol), copper iodide (110 mg, 0.56 

mmol) and potassium carbonate (159 mg, 1.12 mmol) for 4.5 hours afforded 21 mg 

(41%) of 5a as a brown solid. TLC Rf = 0.65 (CHCl3/MeOH, 5:1 with 2 drops of conc.  

NH4OH); mp decomposes at 252.8‒253.8 oC. 1H NMR (400 MHz, DMSO-d6):  = 

2.10‒2.11 (d, 6H, 3'-Me and 4'-Me), 6.03 (s, 2H, 2-NH2, exch), 6.73‒6.75 (d, 1H, Ar), 

6.94‒7.02 (m, 3H, Ar and 4-NH2), 7.17‒7.38 (m, 4H, Ar), 11.46 (s, 1H, 9-NH, exch). 

Elemental analysis calculated (%) for C18H17N5S∙0.58CH3OH: C, 63.04; H, 5.50; N, 

19.78; S, 9.06. Found: C, 63.07; H, 5.17; N, 19.61; S, 9.00. 

 

5-(3-Methoxyphenylthio)-9H-pyrimido[4,5-b]indole-2,4-diamine (6a).  

Using the general procedure described above, the reaction of 195 (40 mg, 0.14 mmol) 

with 3-methoxyphenylthiol 200 (0.07 mL, 0.56 mmol), copper iodide (110 mg, 0.56 

mmol) and potassium carbonate (159 mg, 1.12 mmol) for 4.5 hours afforded 20 mg 

(21%) of 6a as a brown solid. TLC Rf = 0.65 (CHCl3/MeOH, 5:1 with 2 drops of conc.  

NH4OH); mp decomposes at 190.4‒191.3 oC. 1H NMR (400 MHz, DMSO-d6):  = 3.64 

(s, 3H, OCH3), 6.14 (bs, 2H, 2-NH2, exch), 6.53‒6.56 (d, 2H, Ar), 6.71‒6.74 (d, 1H, Ar), 

7.15‒7.44 (m, 6H, Ar and 4-NH2), 11.55 (s, 1H, 9-NH, exch). HRMS (ESI): m/z 

calculated for C17H15N5OS + H+ [M+H+]: 338.1076. Found: 338.1078. HPLC analysis: 
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retention time = 41.89 min; peak area, 97.46%; eluent A, H2O; eluent B, ACN; gradient 

elution (100% H2O to 10% H2O) over 60 min with a flow rate of 0.5 mL/min and 

detection at 254 nm; column temperature, rt.  

 

5-(o-Methoxyphenylthio)-9H-pyrimido[4,5-b]indole-2,4-diamine (7a).  

Compound 195 (50 mg, 0.18 mmol), 2-methoxyphenyl thiol 201 (76 mg, 0.54 mmol), 

copper bromide (16 mg, 0.14 mmol), copper oxide (16 mg, 0.14 mmol) and potassium 

carbonate (75 mg, 0.72 mmol) were added to a Biotage® microwave vial. DMF (3 mL) 

was added as solvent and the vial was sealed. The reaction was run in a Biotage® 

initiator at 145 C for 9 h. After cooling to room temperature, silica gel (0.3 g) was added 

and DMF was removed under reduced pressure. The crude product was purified by 

column chromatography, sequentially eluting with 1%, 2% and 3% methanol in 

chloroform. Fractions containing the product (TLC) were pooled and evaporated to afford 

20 mg (31%) of 7a as a brown solid. TLC Rf = 0.65 (CHCl3/MeOH, 5:1 with 2 drops of 

conc. NH4OH); mp >250 oC. 1H NMR (400 MHz, DMSO-d6):  = 3.34 (s, 3H, 4-NH2, 

exch); 3.89 (s, 3H, OCH3); 6.14 (br, 2H, 2-NH2, exch); 6.31‒6.33 (d, 1H, Ar); 6.70‒6.74 

(t, 1H, Ar); 7.03‒7.05 (m, 1H, Ar); 7.10‒7.13 (m, 1H, Ar); 7.23‒7.31 (m, 2H, Ar); 

7.42‒7.44 (d, 1H, Ar); 11.57 (br, 1H, 9-NH, exch). HRMS (ESI): m/z calculated for 

C17H16N5OS + H+ [M+H+]: 338.1070. Found: 338.1064. HPLC analysis: retention time = 

31.33 min; peak area, 95.86%; eluent A, H2O; eluent B, ACN; gradient elution (100% 

H2O to 10% H2O) over 60 min with a flow rate of 0.5 mL/min and detection at 254 nm; 

column temperature, rt. Elemental analysis calculated (%) for C17H15N5OS∙0.225CHCl3: 

C, 56.80; H, 4.21; N, 19.23; S, 8.80. Found: C, 56.92; H, 4.52; N, 18.94; S, 8.62. 
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2-Amino-4-methylfuran-3-carbonitrile (203).  

To a solution of malononitrile (1.46 g, 22.1 mmol) in 20 mL anhydrous MeOH was 

added triethylamine (2.23 g, 22.1 mmol) under argon atmosphere. To this solution at 0 oC 

was added a solution of hydroxyacetone 202 (1.64 g, 1.08 g/mL, 22.1 mmol) in 10 mL 

anhydrous MeOH. The solution was warmed to rt and stirred for 14 h. The solvents were 

evaporated to give 203 as a brown-colored crude solid. TLC Rf = 0.60 (hexane/EtOAc, 

10:1). 1H NMR (400 MHz, CDCl3):  = 2.01 (s, 3H, 4-CH3), 4.75 (br, 2H, 2-NH2), 6.61 

(s, 1H, C5-CH). 1H NMR agreed well with the literature reported143 values. This material 

was used directly for the next step without purification.  

 

5-Methylfuro[2,3-d]pyrimidin-4-amine (204).  

In a 500 mL round bottom flask, sodium metal (2.3 g, 100 mmol) was added cautiously 

to stirred anhydrous ethanol (5.8 mL, 100 mmol) over 10 min at room temperature. After 

stirring for another 5 min, formamidine hydrochloride (8.05 g, 100 mmol) was added. 

The resulting slurry was stirred at room temperature for 30 min after which solution of 

203 (13 g crude, ≈ 100 mmol) in 200 mL anhydrous ethanol was added. The mixture was 

heated to reflux for 8 h. After cooling the reaction mixture to room temperature, silica gel 

(25 g) was added and the solvents were evaporated under reduced pressure to obtain a 

plug. Purification was done by flash chromatography using 1% methanol in chloroform. 

Fractions containing the product (TLC) were pooled and evaporated to provide 7.1 g 

(47%, two steps) of 204 as lustrous pink crystals. TLC Rf = 0.29 (CHCl3/MeOH, 10:1); 

mp 241.9–242.2 oC (lit.174 240.2–242.5 oC). 1H NMR (400 MHz, DMSO-d6):  = 

2.288‒2.292 (d, 3H, CH3, J = 1.4 Hz), 7.02 (br, 2H, NH2, exch), 7.533‒5.536 (d, 1H, C6-
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CH, J = 1.4 Hz), 8.13 (s, 1H, C2-CH). 1H NMR agreed well with the literature reported174 

values. 

 

N-(4-Methoxyphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (181).  

A 50 mL round bottom flask was charged with copper iodide (66.5 mg, 0.35 mmol), 

anhydrous potassium carbonate (480 mg, 3.5 mmol), L-proline (80 mg, 0.7 mmol), 

compound 204 (150 mg, 1 mmol) and 4-iodo anisole 205 (350 mg, 3.5 mmol). The flask 

was connected to vacuum for 3 min followed by addition of anhydrous DMF (15 mL) 

using syringe. The flask was purged with argon for 5 min and then heated in an oil bath 

maintained at 110 oC. On heating, the color of the suspension turned blueish grey which 

lasted for about 2 h. The reaction was stirred for another 22 h at 110 oC at the end of 

which the mixture was allowed to cool to room temperature. Ethyl acetate (25 mL) was 

added and the mixture was poured into water (100 mL). The product was extracted with 

ethyl acetate (100 mL × 2). The combined organic extracts were washed with brine (100 

mL) and dried (anhydrous sodium sulfate) and concentrated under reduced pressure. 

Silica gel (500 mg) was added and the solvent evaporated to obtain a plug. Purification 

by flash chromatography using hexanes and ethyl acetate (10:1 to 2:1) afforded 87.5 mg 

(33%) of 181 as a light brown solid. TLC Rf = 0.77 (CHCl3/MeOH, 10:1); mp 101.0–

101.7 oC (lit.174 99.0–101.6 oC). 1H NMR (400 MHz, DMSO-d6):  = 2.383‒2.386 (d, 

3H, CH3, J = 1.2 Hz), 3.75 (s, 3H, OCH3), 6.92‒6.94 (d, 2H, Ar, J = 8.8 Hz), 7.47‒7.49 

(d, 2H, Ar, J = 8.8 Hz), 7.650‒7.653 (d, 1H, C6-CH, J = 1.2 Hz), 8.23 (s, 1H, C2-CH), 

8.38 (s, 1H, 4-NH, exch). 1H NMR agreed well with the literature reported174 values. 
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General procedure for the synthesis of substituted furo[2,3-d]pyrimidines 1b‒4b.  

In a 25 mL round bottom flask, compound 181 (1 equivalent) and DMF (2 mL) were 

added to afford a solution. The flask was purged with argon for 5 min followed by 

cooling down to 0 oC using ice bath. To the solution at 0 oC was added sodium hydride (3 

equivalents) and stirred for 20 min under argon atmosphere. Appropriate alkyl iodide (3-

4 equivalents) was injected to the reaction mixture and the flask was warmed to room 

temperature. The mixture was stirred at room temperature until the TLC showed 

completion of the reactant 181. Aqueous 1N HCl solution was added dropwise to quench 

the reaction followed by water (20 mL) to afford a precipitate. The product was extracted 

with ethyl acetate (10 mL × 3). The combined organic extracts were washed with brine 

(10 mL), dried (anhydrous sodium sulfate) and concentrated under reduced pressure. 

Silica gel (200 mg) was added and the solvent was evaporated to obtain a silica gel plug. 

The silica gel plug was purified by flash chromatography using hexanes and ethyl acetate 

(5:1). Fractions containing the product (TLC) were pooled and concentrated to obtain 

1b‒4b in yields of 57‒85%. 

 

N-Ethyl-N-(4-methoxyphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (1b).  

Using the general procedure described above, ethyl iodide 206 (61.70 mg or 0.1 mL, 1.2 

mmol) was added to an ice-cold solution of 181 (100 mg, 0.4 mmol) and NaH (28.8 mg, 

1.2 mmol) in 2 mL DMF and the reaction was run at room temperature for 2 h, to provide 

94 mg (85%) of 1b as an off-white solid. TLC Rf = 0.88 (CHCl3/MeOH, 15:1); mp 77.8–

78.3 oC. 1H NMR (400 MHz, CDCl3):  = 1.064‒1.067 (d, 3H, 5-CH3, J = 1.2 Hz), 1.22 

(t, 3H, CH3, J = 7 Hz), 3.82 (s, 3H, OCH3), 4.06‒4.11 (q, 2H, NCH2, J = 7 Hz), 
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6.88‒6.91 (d, 2H, Ar, J = 8.9 Hz), 7.074‒7.077 (d, 1H, C6-CH, J = 1.2 Hz), 7.09‒7.11 (d, 

2H, Ar, J = 8.9 Hz), 8.48 (s, 1H, C2-CH). Elemental analysis calculated (%) for 

C16H17N3O2: C, 67.83; H, 6.05; N, 14.83. Found: C, 67.53; H, 6.05; N, 14.77. 

 

N-Isopropyl-N-(4-methoxyphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (2b).  

Using the general procedure described above, isopropyl iodide 207 (266.36 mg, 1.6 

mmol) was added to an ice-cold solution of 181 (100 mg, 0.4 mmol) and NaH (38.4 mg, 

1.6 mmol) in 2 mL DMF and the reaction was run at room temperature for 6 h, to provide 

75 mg (63%) of 2b as an off-white solid. TLC Rf = 0.88 (CHCl3/MeOH, 15:1); mp 95.8–

96.6 oC. 1H NMR (400 MHz, CDCl3):  = 1.02 (d, 3H, 5-CH3, J = 1.3 Hz), 1.14‒1.16 (d, 

6H, two CH3, J = 6.8 Hz), 3.79 (s, 3H, OCH3), 5.30‒5.37 (m, 1H, N-CH), 6.85‒6.87 (d, 

2H, Ar, J = 8.9 Hz), 7.000‒7.004 (d, 1H, C6-CH, J = 1.3 Hz), 7.02‒7.04 (d, 2H, Ar, J = 

8.9 Hz), 8.42 (s, 1H, C2-CH). Elemental analysis calculated (%) for C17H19N3O2: C, 

68.67; H, 6.44; N, 14.13. Found: C, 68.61; H, 6.45; N, 13.79. 

 

N-(4-Methoxyphenyl)-5-methyl-N-propylfuro[2,3-d]pyrimidin-4-amine (3b).  

Using the general procedure described above, propyl iodide 208 (199 mg or 0.12 mL, 1.2 

mmol) was added to an ice-cold solution of 181 (100 mg, 0.4 mmol) and NaH (28.8 mg, 

1.2 mmol) in 2 mL DMF and the reaction was run at room temperature for 2 h, to provide 

80 mg (69%) of 3b as an off-white solid. TLC Rf = 0.88 (CHCl3/MeOH, 15:1); mp 

113.5–114.2 oC. 1H NMR (400 MHz, CDCl3):  = 0.94‒0.97 (t, 3H, CH3), 1.095‒1.098 

(d, 3H, 5-CH3, J = 1.2 Hz), 1.70‒1.74 (m, 2H, CH2), 3.84 (s, 3H, OCH3), 3.96‒3.99 (m, 

2H, N-CH2), 6.89‒6.91 (d, 2H, Ar, J = 8.95 Hz), 7.092‒7.095 (d, 1H, C6-CH, J = 1.2 
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Hz), 7.10‒7.12 (d, 2H, Ar, J = 9.0 Hz), 8.49 (s, 1H, C2-CH). Elemental analysis 

calculated (%) for C17H19N3O2: C, 68.67; H, 6.44; N, 14.13. Found: C, 68.72; H, 6.41; N, 

14.16. 

 

N-Butyl-N-(4-methoxyphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (4b).  

Using the general procedure described above, butyl iodide 209 (216.26 mg or 0.13 mL, 

1.2 mmol) was added to an ice-cold solution of 181 (100 mg, 0.4 mmol) and NaH (28.8 

mg, 1.2 mmol) in 2 mL DMF and the reaction was run at room temperature for 2.5 h to 

provide 70 mg (57%) of 4b as a semisolid. TLC Rf = 0.88 (CHCl3/MeOH, 15:1); 1H 

NMR (400 MHz, CDCl3):  = 0.88‒0.92 (t, 3H, CH3), 1.06 (s, 3H, 5-CH3), 1.30‒1.39 (m, 

2H, CH2), 1.59‒1.67 (m, 2H, CH2), 3.81 (s, 3H, OCH3), 3.96‒4.00 (m, 2H, N-CH2), 

6.86‒6.88 (d, 2H, Ar, J = 8.9 Hz), 7.06‒7.09 (m, 3H, Ar and C6-CH), 8.45 (s, 1H, C2-

CH). HRMS (ESI): m/z calculated for C18H21N3O2 + H+ [M+H+]: 312.1712. Found: 

312.1709. HPLC analysis: retention time = 38.76 min; peak area, 97.33%; eluent A, H2O; 

eluent B, ACN; gradient elution (100% H2O to 10% H2O) over 60 min with a flow rate of 

0.5 mL/min and detection at 254 nm; column temperature, rt. 

 

General procedure for the synthesis of N-(4-substituted phenyl)-5-methylfuro[2,3-

d]pyrimidin-4-amines 213‒215 using L-proline as the ligand.  

A 50 mL round bottom flask was charged with copper iodide (66.5 mg, 0.35 mmol), 

anhydrous potassium carbonate (480 mg, 3.5 mmol), L-proline (80 mg, 0.7 mmol), 

compound 204 (150 mg, 1 mmol) and appropriate iodobenzene (3.5 mmol). The flask 

was connected to vacuum for 3 min followed by addition of anhydrous DMF (15 mL) 
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using syringe. The flask was purged with argon for 5 min and then heated in an oil bath 

maintained at 110 oC. On heating, the color of the suspension turned blueish grey which 

lasted for about 2 h. The reaction was stirred for additional 22 h at 110 oC at the end of 

which the mixture was allowed to cool to room temperature. Ethyl acetate (25 mL) was 

added and the mixture was poured into water (100 mL). The product was extracted with 

ethyl acetate (100 mL × 2). The combined organic extracts were washed with brine (100 

mL) and dried (anhydrous sodium sulfate) and concentrated under reduced pressure. 

Silica gel (500 mg) was added and the solvent evaporated to obtain a plug. Purification 

was performed by flash chromatography using hexanes and ethyl acetate (10:1 to 2:1). 

Fractions containing the product (TLC) were pooled and evaporated to afford the 

product. 

 

N-(4-Ethylphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (213).  

Using the general procedure described above, reaction between 204 (150 mg, 1 mmol) 

and 1-ethyl-4-iodobenzene 210 (350 mg, 3.5 mmol) provided 74 mg (29%) of 213 as a 

brown semisolid. TLC Rf = 0.78 (CHCl3/MeOH, 10:1); 1H NMR (400 MHz, CDCl3):  = 

1.23‒1.27 (t, 3H, CH3), 2.421‒2.423 (d, 3H, 5-CH3, J = 0.9 Hz), 2.65‒2.69 (q, 2H, CH2), 

6.85 (s, 1H, 4-NH, exch), 7.21‒7.23 (d, 2H, Ar, J = 8.3 Hz), 7.296‒7.298 (d, 1H, C6-CH, 

J = 0.9 Hz), 7.51‒7.53 (d, 2H, Ar, J = 8.3 Hz), 8.45 (s, 1H, C2-CH). Elemental analysis 

calculated (%) for C15H15N3O·0.1CH3CO2C2H5: C, 70.57; H, 6.08; N, 16.03. Found: C, 

70.79; H, 6.20; N, 15.75. 
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5-Methyl-N-(4-(methylthio)phenyl)furo[2,3-d]pyrimidin-4-amine (214).  

Using the general procedure described above, reaction between 204 (150 mg, 1 mmol) 

and 4-iodo-thioanisole 211 (350 mg, 3.5 mmol) afforded 40 mg (15%) of 214 as a 

semisolid. TLC Rf = 0.83 (CHCl3/MeOH, 10:1); 1H NMR (400 MHz, CDCl3):  = 2.41 

(s, 3H, SCH3), 2.51 (s, 3H, 5-CH3), 7.02 (s, 1H, 4-NH, exch), 7.28‒7.34 (m, 3H, Ar and 

C6-CH), 7.57‒7.59 (d, 2H, Ar), 8.47 (s, 1H, C2-CH).  

 

N-(4-Nitrophenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (215).  

Using the general procedure described above, reaction between 204 (150 mg, 1 mmol) 

and 4-iodo-nitrobenzene 212 (250 mg, 3.5 mmol) provided 51 mg (19%) of 215 as a 

brown solid. TLC Rf = 0.79 (CHCl3/MeOH, 10:1); 1H NMR (400 MHz, CDCl3):  =  

2.474‒2.476 (d, 3H, CH3), 7.835‒7.838 (d, 1H, C6-CH), 7.98‒8.00 (d, 2H, Ar), 

8.25‒8.27 (d, 2H, Ar), 8.54 (s, 1H, C2-CH), 9.16 (s, 1H, 4-NH, exch). HRMS (ESI): m/z 

calculated for C13H11N4O3 + H+ [M+H+]: 271.0831. Found: 271.0836.  

 

N-Methyl-N-(4-ethylphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (1c).  

In a 25 mL round bottom flask, compound 213 (40 mg, 0.16 mmol, 1 equivalent) and 

DMF (2 mL) were added to afford a solution. The flask was purged with argon for 5 min 

followed by cooling down to 0 oC using ice bath. To the solution at 0 oC was added 

sodium hydride (11.5 mg, 0.48 mmol) and stirred for 20 min. Dimethyl sulfate (0.04 mL, 

0.48 mmol) was injected to the reaction mixture and the flask was warmed to room 

temperature. The mixture was stirred at room temperature for 16 h and the TLC showed 

complete utilization of the reactant 213. Aqueous 1N HCl solution was added dropwise to 
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quench the reaction followed by water (20 mL) to afford a precipitate. The product was 

extracted with ethyl acetate (10 mL × 3). The combined organic extracts were washed 

with brine (10 mL), dried (anhydrous sodium sulfate) and concentrated under reduced 

pressure. Silica gel (200 mg) was added and the solvent was evaporated to obtain a plug 

which was purified by flash chromatography using hexanes and ethyl acetate (10:1) to 

obtain 23 mg (53%) of 1c as a white solid. TLC Rf = 0.77 (CHCl3/MeOH, 10:1); mp 

116.3‒116.8 oC. 1H NMR (400 MHz, CDCl3):  = 1.09 (s, 3H, 5-CH3), 1.24‒1.28 (t, 3H, 

CH3), 2.64‒2.70 (q, 2H, CH2), 3.57 (s, 3H, NCH3), 7.10‒7.12 (d, 3H, Ar), 7.19‒7.21 (m, 

2H, Ar and C6-CH), 8.56 (s, 1H, C2-CH). Elemental analysis calculated (%) for 

C16H17N3O·0.07CH3CO2C2H5: C, 71.50; H, 6.47; N, 15.36. Found: C, 71.29; H, 6.28; N, 

15.55. 

 

General procedure for the synthesis of N-(4-substitutedphenyl)-5-methylfuro[2,3-

d]pyrimidin-4-amines 214, 215, 218 and 219 using pipecolinic acid as the ligand.  

A 50 mL round bottom flask was charged with compound 204 (1 equivalent), copper 

iodide (0.4‒0.5 equivalents), anhydrous potassium carbonate (2‒4 equivalents), 

pipecolinic acid (0.8‒1.0 equivalents) and appropriate iodobenzene (2‒3 equivalents). 

The flask was connected to vacuum for 3 min followed by addition of anhydrous DMF 

using syringe. The flask was purged with argon for 5 min and then heated in an oil bath 

maintained at 110 oC. On heating, the color of the suspension turned orange/pink 

suspension which lasted for about 2 h. The reaction was stirred for additional 22 h at 110 

oC at the end of which the mixture was allowed to cool to room temperature. Ethyl 

acetate (25 mL) was added and the mixture was poured into water (100 mL). The product 
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was extracted with ethyl acetate (100 mL × 2). The combined organic extracts were 

washed with brine (100 mL) and dried (anhydrous sodium sulfate) and concentrated 

under reduced pressure. Silica gel (500 mg) was added and the solvent evaporated to 

obtain a plug. Purification was performed by flash chromatography using hexanes and 

ethyl acetate (10:1 to 2:1). Fractions containing the product (TLC) were pooled and 

evaporated to afford the product. 

 

5-Methyl-N-(4-(methylthio)phenyl)furo[2,3-d]pyrimidin-4-amine (214).  

Using the general procedure described above, reaction between 204 (149 mg, 1 mmol) 

and 4-iodo-thioanisole 211 (500 mg, 2 mmol) in the presence of copper iodide (76 mg, 

0.4 mmol), pipecolinic acid (103 mg, 0.8 mmol),  anhydrous potassium carbonate (277 

mg, 2 mmol) and anhydrous DMF (15 mL) afforded 120 mg (43%) of 214 as a brownish 

red solid. TLC Rf = 0.83 (CHCl3/MeOH, 10:1); mp 112.8–113.0 oC. 1H NMR (400 MHz, 

DMSO-d6):  = 2.431‒2.434 (d, 3H, 5-CH3, J = 1.2 Hz), 2.49 (s, 3H, SCH3), 7.28‒7.30 

(d, 2H, Ar, J = 8.6 Hz), 7.62‒7.63 (d, 2H, Ar, J = 8.6 Hz), 7.705‒7.708 (d, 1H, C6-CH, J 

= 1.2 Hz), 8.33 (s, 1H, C2-CH), 8.48 (s, 1H, 4-NH, exch). Elemental analysis calculated 

(%) for C14H13N3OS·0.07CH3(CH2)4CH3: C, 62.44; H, 5.08; N, 15.15; S, 11.77. Found: 

C, 62.41; H, 5.13; N, 15.02; S, 11.74. 

 

N-(4-Nitrophenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (215).  

Using the general procedure described above, reaction between 204 (149 mg, 1 mmol) 

and 4-iodo-nitrobenzene 212 (500 mg, 2 mmol) in the presence of copper iodide (76 mg, 

0.4 mmol), pipecolinic acid (103 mg, 0.8 mmol), anhydrous potassium carbonate (277 
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mg, 2 mmol) and anhydrous DMF (15 mL) afforded 90 mg (33%) of 215 as yellow 

crystals. TLC Rf = 0.79 (CHCl3/MeOH, 10:1); mp decomposes at 157.6–158.2 oC. 1H 

NMR (400 MHz, DMSO-d6):  = 2.472‒2.474 (d, 3H, 5-CH3, J = 1.0 Hz), 7.832‒7.835 

(d, 1H, C6-CH, J = 1.2 Hz), 7.98‒8.00 (d, 2H, Ar, J = 9.2 Hz), 8.25‒8.27 (d, 2H, Ar, J = 

9.2 Hz), 8.54 (s, 1H, C2-CH), 9.14 (s, 1H, 4-NH, exch). Elemental analysis calculated 

(%) for C13H10N4O3·0.09CH3(CH2)4CH3: C, 58.50; H, 4.08; N, 20.15. Found: C, 58.18; 

H, 4.17; N, 19.82. 

 

N1-Methyl-N4-(5-methylfuro[2,3-d]pyrimidin-4-yl)benzene-1,4-diamine (218).  

Using the general procedure described above, reaction between 204 (298 mg, 2 mmol) 

and 4-iodo-N-methyl aniline 216 (700 mg, 6 mmol) in the presence of copper iodide (190 

mg, 1 mmol), pipecolinic acid (258 mg, 2 mmol), anhydrous potassium carbonate (1100 

mg, 8 mmol) and anhydrous DMF (30 mL) provided 136 mg (27%) of 218 as a light 

brown solid. TLC Rf = 0.73 (CHCl3/MeOH, 10:1); mp 161.4–162.2 oC. 1H NMR (400 

MHz, DMSO-d6):  = 2.355‒2.357 (d, 3H, 5-CH3, J = 1.0 Hz), 2.68‒2.69 (d, 3H, 4'-

NCH3, J = 5.0 Hz), 5.56‒5.60 (q, 1H, 4'-NH, exch), 6.53‒6.56 (d, 2H, Ar, J = 8.7 Hz), 

7.23‒7.26 (d, 2H, Ar, J = 8.7 Hz), 7.618‒7.621 (d, 1H, C6-CH, J = 1.2 Hz), 8.19 (s, 1H, 

C2-CH), 8.26 (s, 1H, 4-NH, exch). Elemental analysis calculated (%) for C14H14N4O: C, 

66.13; H, 5.55; N, 22.03. Found: C, 66.14; H, 5.57; N, 21.90. 

 

N1,N1-Dimethyl-N4-(5-methylfuro[2,3-d]pyrimidin-4-yl)benzene-1,4-diamine (219).  

Using the general procedure described above, reaction between 204 (298 mg, 2 mmol) 

and 4-iodo-N,N-dimethyl aniline 217 (741 mg, 6 mmol) in the presence of copper iodide 
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(190 mg, 1 mmol), pipecolinic acid (258 mg, 2 mmol), anhydrous potassium carbonate 

(1100 mg, 8 mmol) and anhydrous DMF (30 mL) provided 191 mg (36%) of 219 as a 

brown solid. TLC Rf = 0.77 (CHCl3/MeOH, 10:1); mp decomposes at 196.8–197.2 oC. 1H 

NMR (400 MHz, DMSO-d6):  = 2.379‒2.382 (d, 3H, 5-CH3, J = 1.1 Hz), 2.89 (s, 6H, 4'-

N(CH3)2), 6.74‒6.76 (d, 2H, Ar, J = 8.98 Hz), 7.36‒7.38 (d, 2H, Ar, J = 8.93 Hz), 

7.637‒7.640 (d, 1H, C6-CH, J = 1.2 Hz), 8.21 (s, 1H, C2-CH), 8.30 (s, 1H, 4-NH, exch). 

Elemental analysis calculated (%) for C15H16N4O·0.1CH3(CH2)4CH3: C, 67.66; H, 6.33; 

N, 20.23. Found: C, 67.48; H, 6.14; N, 19.92. 

 

General procedure for the synthesis of substituted furo[2,3-d]pyrimidines 2c, 4c and 

5c.  

In a 25 mL round bottom flask, appropriate furo[2,3-d]pyrimidine (1 equivalent) and 

DMF (2 mL) were added to afford a solution. The flask was purged with argon for 5 min 

followed by cooling down to 0 oC using ice bath. To the solution at 0 oC was added 

sodium hydride (3 equivalents) and stirred for 20 min under argon atmosphere. Dimethyl 

sulfate (3 equivalents) was injected to the reaction mixture and the flask was warmed to 

room temperature. The mixture was stirred at room temperature for 4 h after which 

aqueous 1N HCl solution was added dropwise to quench the reaction followed by water 

(20 mL) to afford a precipitate. The product was extracted with ethyl acetate (10 mL × 3) 

and the combined organic extracts were washed with brine (10 mL), dried (anhydrous 

sodium sulfate) and concentrated under reduced pressure. Silica gel (200 mg) was added 

and the solvent was evaporated to obtain a plug. The plug was purified by flash 
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chromatography eluting with hexanes and ethyl acetate (5:1) to obtain 2c, 4c and 5c in 

yields of 43-51%. 

 

N,5-Dimethyl-N-(4-(methylthio)phenyl)furo[2,3-d]pyrimidin-4-amine (2c).  

Using the general procedure described above, reaction between 212 (105 mg, 0.4 mmol) 

and dimethylsulfate (0.08 mL, 1.2 mmol) in 8 mL DMF in the presence of sodium 

hydride (28.8 mg, 1.2 mmol) provided 56 mg (51%) of 2c as a brown solid. TLC Rf = 

0.88 (CHCl3/MeOH, 10:1); mp 95.8–96.2 oC. 1H NMR (400 MHz, DMSO-d6):  =  

1.109‒1.112 (d, 3H, 5-CH3, J = 1.1 Hz), 2.48 (s, 3H, SCH3), 3.47 (s, 3H, NCH3), 

7.20‒7.22 (d, 2H, Ar, J = 8.65 Hz), 7.28‒7.30 (d, 2H, Ar, J = 8.66 Hz), 7.567‒7.570 (d, 

1H, C6-CH, J = 1.2 Hz), 8.50 (s, 1H, C2-CH). Elemental analysis calculated (%) for 

C15H15N3OS: C, 63.13; H, 5.30; N, 14.72; S, 11.24. Found: C, 63.17; H, 5.41; N, 14.76; 

S, 11.14. 

 

N1,N1,N4-Trimethyl-N4-(5-methylfuro[2,3-d]pyrimidin-4-yl)benzene-1,4-diamine 

(4c).  

Using the general procedure described above, reaction between 219 (107.3 mg, 0.4 

mmol) and dimethylsulfate (0.08 mL, 1.2 mmol) in 8 mL DMF in the presence of sodium 

hydride (28.8 mg, 1.2 mmol) provided 54 mg (45%) of 4c as a white solid. TLC Rf = 0.85 

(CHCl3/MeOH, 10:1); mp 142.1–142.8 oC. 1H NMR (400 MHz, DMSO-d6):  =  

1.071‒1.073 (d, 3H, 5-CH3, J = 0.9 Hz), 2.90 (s, 6H, 4'-N(CH3)2), 3.41 (s, 3H, 4-NCH3), 

6.73‒6.75 (d, 2H, Ar, J = 8.9 Hz), 7.07‒7.09 (d, 2H, Ar, J = 8.9 Hz), 7.482‒7.484 (d, 1H, 

C6-CH, J = 0.9 Hz), 8.41 (s, 1H, C2-CH). Elemental analysis calculated (%) for 
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C16H18N4O·0.22(C2H5)2O: C, 67.89; H, 6.82; N, 18.76. Found: C, 68.16; H, 6.60; N, 

18.64. 

 

N,5-Dimethyl-N-(4-nitrophenyl)furo[2,3-d]pyrimidin-4-amine (5c).  

Using the general procedure described above, reaction between 215 (48.5 mg, 0.18 

mmol) and dimethylsulfate (0.04 mL, 0.54 mmol) in 4 mL DMF in the presence of 

sodium hydride (13 mg, 0.54 mmol) provided 22 mg (43%) of 5c as a yellow solid. TLC 

Rf = 0.83 (CHCl3/MeOH, 10:1); mp 190.6–191.0 oC. 1H NMR (400 MHz, DMSO-d6):  

= 1.44 (s, 3H, 5-CH3), 3.63 (s, 3H, NCH3), 7.29‒7.31 (d, 2H, Ar, J = 9.03 Hz), 7.82 (s, 

1H, C6-CH), 8.16‒8.18 (d, 2H, Ar, J = 9.07 Hz), 8.74 (s, 1H, C2-CH). 1H NMR (400 

MHz, CDCl3):  = 1.442‒1.444 (d, 3H, 5-CH3, J = 0.9 Hz), 3.67 (s, 3H, NCH3), 

7.08‒7.11 (d, 2H, Ar, J = 9.1 Hz), 7.305‒7.307 (d, 1H, C6-CH, J = 0.9 Hz), 8.14‒8.16 (d, 

2H, Ar, J = 9.1 Hz), 8.69 (s, 1H, C2-CH). Elemental analysis calculated (%) for 

C14H12N4O3·0.33CH3CO2C2H5: C, 58.72; H, 4.71; N, 17.88. Found: C, 59.04; H, 4.72; N, 

17.82. 

 

N1,N4-Dimethyl-N1-(5-methylfuro[2,3-d]pyrimidin-4-yl)benzene-1,4-diamine (3c).  

In a 25 mL round bottom flask, compound 218 (50.8 mg, 0.2 mmol, 1 equivalent) and 

DMF (3 mL) were added to afford a solution. The flask was purged with argon for 5 min 

followed by cooling down to 0 oC using ice bath. To the solution at 0 oC was added 

sodium hydride (5.3 mg, 0.22 mmol) and stirred for 20 min at 0 oC. Dimethyl sulfate 

(0.02 mL, 0.22 mmol) was injected to the reaction mixture and the mixture was stirred at 

-10‒0 oC for 48 h after which TLC showed complete utilization of the reactant 218. 
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Aqueous 1N HCl solution was added dropwise to quench the reaction followed by water 

(5 mL) to afford a precipitate. The product was extracted with ethyl acetate (10 mL × 3). 

The combined organic extracts were washed with brine (10 mL), dried (anhydrous 

sodium sulfate), added silica gel (200 mg) and concentrated under reduced pressure to 

obtain a plug. Purification was done by flash chromatography eluting with hexanes and 

ethyl acetate (10:1) to obtain 12.5 mg (20%) of 3c as a brown solid and 18 mg (30%) of 

undesired product 4c. TLC Rf = 0.82 (CHCl3/MeOH, 10:1); mp 122.1–122.9 oC. 1H NMR 

(400 MHz, DMSO-d6):  = 1.103‒1.105 (d, 3H, 5-CH3, J = 1.1 Hz), 2.67‒2.68 (d, 3H, 4'-

NCH3, J = 5.0 Hz), 3.39 (s, 3H, 4-NCH3), 5.80‒5.84 (q, 1H, 4'-NH, exch), 6.54‒6.56 (d, 

2H, Ar, J = 8.7 Hz), 6.98‒7.00 (d, 2H, Ar, J = 8.7 Hz), 7.474‒7.477 (d, 1H, C6-CH, J = 

1.2 Hz), 8.39 (s, 1H, C2-CH). Elemental analysis calculated (%) for 

C15H16N4O·0.6C4H8O: C, 67.07; H, 6.73; N, 17.98. Found: C, 67.32; H, 6.58; N, 17.91. 

 

Ethyl(2-chloro-2-nitrophenyl)(cyano)acetate (8).  

To an ice cold solution of ethyl cyanoacetate (10.9 mL, 102.4 mmol) in anhydrous THF 

(170 mL) under nitrogen, was added potassium tert–butoxide (12.7 g, 107.5 mmol). The 

formed white suspension was stirred for 15 min, then treated with 1,2–dichloro-3-nitro-

benzene 7 (9.83 g , 51.2 mmol). The suspension was heated to reflux for 48 hours. The 

resulting reddish brown solution was poured in to 50 mL water, and the aqueous mixture 

was then acidified to pH 2 with conc. HCl.  The mixture was extracted with ether (150 

mL × 3) and then the combined organic phase was dried using anhydrous Na2SO4 and 

then concentrated to give a dark yellow‒colored semisolid. Column chromatography in a 

column packed with silica gel, four times the weight of the dark oil using 10:1 
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hexane:ethyl acetate as the eluent provided 13.2 g (96%) of 8 as a viscous yellow liquid. 

TLC Rf = 0.32 (hexane/EtOAc, 3:1). 1H NMR (500 MHz, DMSO-d6):  = 1.18‒1.21 (t, 

3H, CH3), 4.19‒4.24 (q, 2H, CH2), 6.37 (s, 1H, CH), 7.7‒8.15 (m, 3H, Ar). 1H NMR and 

mp agreed well with the literature reported125 values. 

 

Ethyl-2-amino-4-chloro-1H-indole-3-carboxylate (9).  

To a solution of 8 (6 g, 22.34 mmol) in 230 mL glacial acetic acid was added 6 g of zinc 

dust. The mixture was heated to 55 °C for 1 h and then 2 g of Zn dust was added. Zinc 

dust (2 g) was added for every 10 hours. After stirring at 55 °C for another 45 hrs, the 

yellow mixture was filtered through a pad of Celite. The pad was washed with acetic acid 

and the filtrate was concentrated to a residue that was distributed between chloroform and 

water. The organic phase was washed with 5% NaHCO3 solution to provide a pink 

precipitate which was filtered, dried over P2O5, dissolved in acetone, added silica gel 

(equal to the quantity of the precipitate) and converted to a silica gel plug by removing 

the solvent under reduced pressure. The plug was transferred on top of a column packed 

with silica gel, twenty times the weight of plug, eluted with 1% methanol in CHCl3. 

Fractions containing the product (TLC) were pooled and evaporated to give 3.94 g (74%) 

of 9 as a pink solid. TLC Rf = 0.40 (CHCl3/MeOH, 10:1); mp 141.4–142.0 oC (lit.125 

140.0–142.0 oC). 1H NMR (500 MHz, DMSO-d6):  = 1.26‒1.29 (t, 3H, CH3), 4.16‒4.21 

(q, 2H, CH2), 6.87 (s, 2H, 2-NH2, exch), 6.83‒7.08 (m, 3H, Ar), 10.93 (s, 1H, 9-NH, 

exch). 1H NMR agreed well with the literature reported125 values. 
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2-Amino-5-chloro-3,9-dihydro-4H-pyrimido[4,5-b]indol-4-one (10).  

Methyl sulfone (30 g), compound 9 (4 g, 16.7 mmol) and carbamimidic chloride 

hydrochloride195 (2.12 g, 18.4 mmol ) were taken in a round-botttomed flask and then 3 g 

of methyl sulfone was added on top of the mixture. Heating to 120 °C with stirring, the 

mixture was dissolved completely following which the reaction was continued for 40 

minutes. About 100 mL water was added to quench the reaction. Neutralization of the 

reaction mixture with conc. NH4OH solution resulted in a brown precipitate. The 

precipitate was filtered, dried under P2O5 to provide 2.52 g (64%) of 10 as a dark brown 

solid. This material was used for the next step without further purification. TLC Rf = 0.43 

(CHCl3/MeOH, 5:1); mp >250 oC (lit.125 >250 oC). 1H NMR (500 MHz, DMSO-d6):  = 

6.57 (br, 2H, 2-NH2 , exch), 7.04‒7.17 (m, 3H, Ar), 10.41 (s, 1H, 9-NH, exch), 11.64 (s, 

1H, 3-NH, exch). 1H NMR agreed well with the literature reported125 values. 

 

N-(5-Chloro-4-oxo-4,9-dihydro-3H-pyrimido[4,5-b]indol-2-yl)-2,2-dimethyl propan-

amide (220). 

Compound 10 (2 g, 8.5 mmol) and 150 mL of pivalic anhydride were taken in a 250 mL 

round bottomed flask. The reaction mixture was stirred at 120 °C for 2.5 h. Then, hexane 

was added under room temperature which resulted in precipitation of pale brown colored 

solid. The solid was filtered, washed with hexane and used without further purification 

for the next step. The filtrate was then concentrated and a plug was made, using silica gel 

three times the product. The plug was transferred on top of a column packed with silica 

gel, twenty times the weight of plug and eluted with 1% methanol in chloroform. 

Fractions containing the product (TLC) were pooled and evaporated to afford 1.6 g (60%) 
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of 220 as a brown solid. TLC Rf = 0.80 (CHCl3/MeOH, 5:1); mp 189.2–189.8 oC (lit.125 

185.8–190.1 oC). 1H NMR (500 MHz, DMSO-d6):  = 1.26 (s, 9H, C(CH3)3), 7.19‒7.37 

(m, 3H, Ar), 11.16 (s, 1H, 2-NH, exch), 11.93 (s, 1H, 3-NH, exch), 12.11 (s, 1H, 9-NH, 

exch). 1H NMR agreed well with the literature reported125 values. 

 

N-(4,5-Dichloro-9H-pyrimido[4,5-b]indol-2-yl)-2,2-dimethyl propanamide (221).  

Compound 220 (1 g, 3.137 mmol) was treated with 200 mL of POCl3 in a 500 mL round 

bottom flask. The reaction mixture was heated to reflux for 4 hours. The POCl3 was 

evaporated and the mixture was neutralized using conc. NH4OH solution (28-30 wt% in 

water). The aqueous mixture was filtered (the precipitate being the compound) and the 

precipitate was dried. To the solution was added silica and solvent was removed under 

reduced pressure to provide a silica gel plug. The plug was transferred on top of a column 

packed with silica gel, twenty times the weight of plug, eluted with chloroform and 1% 

methanol in chloroform. Fractions containing the product (TLC) were pooled and 

evaporated to provide 710 mg (67%) of 221 as a brown solid. TLC Rf = 0.86 

(CHCl3/MeOH, 5:1); mp 245.9–246.5 oC (lit.125 245.6–246.1 oC). 1H NMR (500 MHz, 

DMSO-d6):  = 1.24 (s, 9H, C(CH3)3), 7.36‒7.50 (m, 3H, Ar), 10.30 (s, 1H, 9-NH, exch), 

12.96 (s, 1H, 2-NH, exch). 1H NMR agreed well with the literature reported125 values. 

 

General procedure for the synthesis of 5-chloro-N4-methyl-9H-pyrimido[4,5-

b]indole-2,4-diamines 1d‒6d. 

To a solution of 221 (1 equivalent) in 40 mL of i-propanol was added N-methyl anilines 

222‒226 or 6-methoxy-1,2,3,4-tetrahydroquinoline 227 and 2 drops of conc. HCl. The 
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reaction mixture was heated to reflux for 70 h, cooled to room temperature and then 

neutralized with 4 mL of 1N sodium hydroxide solution. The reaction was then heated to 

reflux for 2 h. The solvent was then evaporated to obtain a dark brown colored solid. The 

resulting precipitate was then dissolved in chloroform and methanol. To the solution was 

added silica gel, four times the weight of the reaction mixture, and the solvent was 

removed under reduced pressure to provide a plug. The plug was transferred on top of a 

column packed with silica gel, twenty times the weight of plug and was eluted with 1% 

methanol in chloroform. Fractions containing the product (TLC) were pooled and 

evaporated to give a solid which was further purified by washing with hexane.  

 

5-Chloro-N4-methyl-N4-phenyl-9H-pyrimido[4,5-b]indole-2,4-diamine (1d).  

Using the general procedure described above, compound 221 (100 mg, 0.30 mmol) was 

treated with N-methyl aniline 222 (95 mg, 0.90 mmol) to afford 64 mg (67%) of 1d as a 

brown solid. TLC Rf = 0.42 (CHCl3/MeOH, 15:1); mp 228.1–229.1 oC. 1H NMR (400 

MHz, DMSO-d6):  = 3.34 (s, 3H, NCH3), 6.61 (s, 2H, NH2, exch), 6.76‒6.80 (m, 3H, 

Ar), 7.02‒7.04 (m, 1H, Ar), 7.12‒7.21 (m, 3H, Ar), 7.27‒7.29 (m, 1H, Ar), 11.81 (s, 1H, 

9-NH, exch). Elemental analysis calculated (%) for C17H14ClN5: C, 63.06; H, 4.36; N, 

21.63; Cl, 10.95. Found: C, 63.06; H, 4.25; N, 21.62; Cl, 10.86. 

 

5-Chloro-N4-methyl-N4-p-tolyl-9H-pyrimido[4,5-b]indole-2,4-diamine (2d).  

Using the general procedure described above, compound 221 (100 mg, 0.30 mmol) was 

treated with N-methyl-p-toluidine 223 (108 mg, 0.90 mmol) to provide 60 mg (60%) of 

2d as a brown solid. TLC Rf = 0.38 (CHCl3/MeOH, 15:1); mp 231.9–232.8 oC. 1H NMR 
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(400 MHz, DMSO-d6):  = 2.19 (s, 3H, CH3), 3.32 (s, 3H, NCH3), 6.53 (s, 2H, NH2, 

exch), 6.70‒6.72 (m, 2H, Ar), 6.94‒6.96 (m, 2H, Ar), 7.00‒7.02 (m, 1H, Ar), 7.16‒7.19 

(m, 1H, Ar), 7.25‒7.27 (m, 1H, Ar), 11.74 (s, 1H, 9-NH, exch). Elemental analysis 

calculated (%) for C18H16ClN5: C, 63.99; H, 4.77; N, 20.73; Cl, 10.49. Found: C, 63.85; 

H, 4.83; N, 20.44; Cl, 10.56. 

 

5-Chloro-N4-(4-chlorophenyl)-N4-methyl-9H-pyrimido[4,5-b]indole-2,4-diamine 

(3d).  

Using the general procedure described above, compound 221 (100 mg, 0.30 mmol) was 

treated with 4-chloro-N-methyl aniline 224 (126 mg, 0.90 mmol) to afford 68 mg (64%) 

of 3d as a brown solid. TLC Rf = 0.39 (CHCl3/MeOH, 15:1); mp 226.4–227.2 oC. 1H 

NMR (400 MHz, DMSO-d6):  = 3.35 (s, 3H, NCH3), 6.66 (s, 2H, NH2, exch), 6.75‒6.77 

(m, 2H, Ar), 7.04‒7.06 (m, 1H, Ar), 7.16‒7.19 (m, 3H, Ar), 7.28‒7.30 (m, 1H, Ar), 11.86 

(s, 1H, 9-NH, exch). Elemental analysis calculated (%) for C17H13Cl2N5∙1.0CH3OH: C, 

55.40; H, 4.39; N, 17.94; Cl, 18.17. Found: C, 55.34; H, 4.33; N, 18.04; Cl, 18.06. 

 

5-Chloro-N4-3-methoxyphenyl-N4-methyl-9H-pyrimido[4,5-b]indole-2,4-diamine 

(4d).  

Using the general procedure described above, compound 221 (100 mg, 0.30 mmol) was 

treated with 3-methoxy-N-methyl aniline 225 (122 mg, 0.90 mmol) to give 65 mg (62%) 

of 4d as a brown solid. TLC Rf = 0.39 (CHCl3/MeOH, 15:1); mp 226.8–227.2 oC. 1H 

NMR (400 MHz, DMSO-d6):  = 3.34 (s, 3H, OCH3), 3.59 (s, 3H, NCH3), 6.28‒6.38 (m, 

3H, Ar), 6.63 (s, 2H, NH2, exch), 7.00‒7.05 (m, 2H, Ar), 7.18‒7.22 (m. 1H, Ar); 
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7.28‒7.30 (m. 1H, Ar); 11.82 (s, 1H, 9-NH, exch). Elemental analysis calculated (%) for 

C18H16ClN5O∙0.23CH3COCH3: C, 61.14; H, 4.77; N, 19.07; Cl, 9.66. Found: C, 60.88; H, 

4.57; N, 19.14; Cl, 9.38. 

 

5-Chloro-N4-3-fluorophenyl-N4-methyl-9H-pyrimido[4,5-b]indole-2,4-diamine (5d).  

Using the general procedure described above, compound 221 (100 mg, 0.30 mmol) was 

treated with 3-fluoro-N-methyl aniline 226 (122 mg, 0.90 mmol) to yield 59 mg (58%) of 

5d as a brown solid. TLC Rf = 0.39 (CHCl3/MeOH, 15:1); mp 217.1–217.9 oC. 1H NMR 

(400 MHz, DMSO-d6):  = 3.31 (s, 3H, NCH3), 6.49‒6.56 (m, 3H, Ar), 6.71 (s, 2H, NH2, 

exch), 7.05‒7.07 (d, 1 H, Ar), 7.09‒7.11 (m, 1H, Ar), 7.20‒7.24 (t, 1H, Ar), 7.29‒7.31 (d, 

1H, Ar), 11.89 (s, 1H, 9-NH, exch). HRMS (ESI): m/z calculated for C17H14N5ClF + H+ 

[M+H+]: 342.0916. Found: 342.0911. HPLC analysis: retention time = 39.47 min; peak 

area, 96.40%; eluent A, H2O; eluent B, ACN; gradient elution (100% H2O to 10% H2O) 

over 60 min with a flow rate of 0.5 mL/min and detection at 254 nm; column 

temperature, rt. 

 

5-Chloro-4-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-9H-pyrimido[4,5-b]indol-2-

amine (6d).  

Using the general procedure described above, compound 221 (100 mg, 0.30 mmol) was 

treated with 6-methoxy-1,2,3,4-tetrahydroquinoline 227 (145 mg, 0.90 mmol) to provide 

59 mg (52%) of 6d as a brown solid. TLC Rf = 0.30 (CHCl3/MeOH, 15:1); mp 187.1–

187.9 oC. 1H NMR (400 MHz, DMSO-d6):  = 1.78‒1.79 (m, 1H, CH), 1.98‒1.99 (m, 

1H, CH), 2.78‒2.81 (m, 2H, CH2), 3.57 (m, 1H, CH), 3.66 (s, 3H, OCH3), 3.85‒3.86 (m, 
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1H, CH), 6.42 (s, 2H, 2-NH2, exch), 6.46‒6.49 (m, 1H, Ar), 6.52‒6.54 (m, 1H, Ar), 

6.65‒6.66 (d, 1H, Ar), 7.02‒7.03 (m, 1H, Ar), 7.15‒7.18 (t, 1H, Ar), 7.25‒7.26 (m, 1H, 

Ar), 11.70 (s, 1H, 9-NH, exch). Elemental analysis calculated (%) for C20H18ClN5O: C, 

63.24; H, 4.78; N, 18.44; Cl, 9.33. Found: C, 63.24; H, 4.97; N, 18.15; Cl, 9.31. 

 

2-Amino-6-hydrazinopyrimidin-4(3H)-one (229).  

To a stirred suspension of 228 (15 g, 103 mmol) in 250 mL water was added anhydrous 

hydrazine (12 g, 375 mmol), and the mixture was heated to reflux for 3 h. The resulting 

clear solution was cooled, and the precipitate that separated was collected by filtration, 

washed with water followed by ethanol and dried to give 6.6 g (46%) of 229 as a white 

solid. mp decomposes at 313.0 oC (lit.207 314.0–315.0 oC). This material was used without 

further purification for the next step. 

 

2-Amino-3,5,6,7,8,9-hexahydro-4H-pyrimido[4,5-b]indol-4-one (231).  

A mixture of 2-amino-6-hydrazinopyrimidin-4(3H)-one 229 (3.5 g, 25 mmol) and 

cyclohexanone 230 (2.45 g, 25 mmol) in diphenyl ether (300 mL) was stirred at 120 oC 

for 14 h and then heated to reflux (250 oC) for 3 h. After cooling to room temperature, 

hexane (600 mL) was added, and the precipitated solid was collected by filtration. The 

solid was dried over P2O5, dissolved in methanol, and silica gel (three times the weight of 

solid) was added, following which the solvent was removed under reduced pressure to 

obtain a dry plug. The plug was loaded on top of a column packed with silica in 

chloroform. The weight of silica in the column was thirty times the weight of the plug. 

Flash chromatography using 20% methanol in chloroform afforded 4.1 g (81%) of 231178 
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as an yellow solid. TLC Rf = 0.35 (CHCl3/MeOH, 5:1); mp >300 oC. 1H NMR (500 MHz, 

DMSO-d6):  = 1.64‒1.69 (m, 4H, 6-CH2 and 7-CH2), 2.42 (m, 2H, 5-CH2), 2.53 (m, 2H, 

8-CH2), 5.88 (s, 2H, 2-NH2, exch), 10.02 (s, 1H, 3-NH, exch), 10.50 (s, 1H, 9-NH, exch). 

This material was used without further purification for the next step. 

  

2-Amino-3,9-dihydro-4H-pyrimido[4,5-b]indol-4-one (232).  

A mixture of 231 (1 g, 5 mmol) and 10% palladium on carbon (480 mg, 0.5 mmol) in 

diphenyl ether (50 mL) was heated to reflux for 3 h. The reaction mixture was cooled to 

room temperature, and DMF (50 mL) was added to dissolve the product. The catalyst was 

removed by filtration through Celite, washed with DMF and silica gel (3 g) was added. 

Solvent was removed under reduced pressure to afford a plug, which was loaded on top 

of a silica gel column in chloroform (the silica was thirty times the weight of the plug). 

The column was eluted with 20% methanol in chloroform to afford 560 mg (59%) of 

232178 as an off-white solid. TLC Rf = 0.32 (CHCl3/MeOH, 5:1); mp >300 oC. 1H NMR 

(500 MHz, DMSO-d6):  = 6.51 (s, 2H, 2-NH2), 7.03‒7.10 (m, 2H, Ar), 7.22‒7.25 (m, 

1H, Ar), 7.68‒7.70 (m, 1H, Ar), 10.47 (s, 1H, 3-NH, exch), 11.35 (s, 1H, 9-NH, exch). 

This material was used without further purification for the next step. 

 

2,2-Dimethyl-N-(4-oxo-4,9-dihydro-3H-pyrimido[4,5-b]indol-2-yl)propanamide 

(233). 

Compound 232 (0.5 g, 2.5 mmol) and 20 mL of pivalic anhydride were taken in a 100 

mL round-bottomed flask. The reaction mixture was stirred at 120 °C for 8 hours. Then, 

hexane (60 mL) was added to the reaction mixture at room temperature leading to the 
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formation of a brown colored precipitate. The precipitate was filtered, washed with 

hexane and dried to give 0.52 g (73%) of 233178 as a brown solid. TLC Rf = 0.6 

(CHCl3/MeOH, 10:1); mp >300 oC. 1H NMR (500 MHz, DMSO-d6):  = 1.26 (s, 9H, 

C(CH3)3), 7.17‒7.21 (m, 1H, Ar), 7.24‒7.28 (m, 1H, Ar), 7.43‒7.45 (m, 1H, Ar), 

7.86‒7.88 (m, 1H, Ar), 11.12 (s, 1H, NH, exch), 11.85 (s, 1H, NH, exch), 12.03 (s, 1H, 

NH, exch). This material was used without further purification for the next step. 

 

N-(4-Chloro-9H-pyrimido[4,5-b]indol-2-yl)-2,2-dimethylpropanamide (234).  

To a 50 mL round-bottomed flask was added 233 (56 mg, 0.17 mmol) and phosphorus 

oxychloride (15 mL). The mixture was stirred and heated to reflux for 4 h. The 

phosphoryl trichloride was removed by evaporation under reduced pressure using a 

vacuum aspirator. The resulting residue was cooled in an ice and water mixture and 

neutralized with ammonium hydroxide solution to yield a precipitate that was filtered and 

dried over P2O5. The filtrate was extracted with chloroform and dried over sodium 

sulfate. The dry precipitate and filtrate were combined and dried under vacuum to 

provide 35 mg (59%) of 234178 as a brown solid. TLC Rf = 0.65 (CHCl3/MeOH, 10:1); 

mp 234.1‒234.6 oC. 1H NMR (400 MHz, DMSO-d6):  = 1.24 (s, 9H, C(CH3)3), 

7.34‒7.38 (m, 1H, Ar), 7.53‒7.55 (m, 2H, Ar), 8.15‒8.17 (m, 1H, Ar), 10.25 (s, 1H, 2-

NH, exch), 12.55 (s, 1H, 9-NH, exch). This material was used without further purification 

for the next step. 
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General procedure for the synthesis of N4-substituted-9H-pyrimido[4,5-b]indole-2,4-

diamines 1e and 2e:  

To a 100 mL round-bottomed flask were added 234 (1 equivalent), appropriate aryl amine 

(3 equivalents), n-butanol and catalytic amount of conc. HCl. The resulting mixture was 

heated to reflux until the TLC showed completion of the reactant 234. The solvent was 

removed under reduced pressure to obtain a mixture that was dissolved in methanol, 

basified with ammonia in methanol, and silica gel was added. The solvent was removed 

by evaporation to yield a dry plug which was purified by flash chromatography using 1% 

methanol in chloroform. Fractions containing the desired product (TLC) were pooled and 

evaporated to obtain compounds 1e and 2e. 

 

N4-Ethyl-N4-(4-methoxyphenyl)-9H-pyrimido[4,5-b]indole-2,4-diamine (1e).  

Using the general procedure described above, compound 234 (80 mg, 0.26 mmol), N-

ethyl-4-methoxyaniline 235 (120 mg, 0.78 mmol) and 1 drop of conc. HCl were heated to 

reflux in 50 mL of n-butanol for 72 h to afford 30 mg (31%) of 1e178 as a white solid. 

TLC Rf = 0.50 (CHCl3/MeOH, 15:1); mp 223.9–224.6 oC. 1H NMR (400 MHz, DMSO-

d6):  = 1.15‒1.19 (t, 3H, J = 6.9 Hz, CH3), 3.74 (s, 3H, OCH3), 4.09‒4.13 (q, 2H, J = 6.9 

Hz, N-CH2), 5.66‒5.68 (d, 1H, Ar), 6.15 (s, 2H, 2-NH2, exch), 6.50‒6.54 (t, 1H, Ar), 

6.90‒6.97 (m, 3H, Ar), 7.12‒7.16 (m, 3H, Ar), 11.20 (s, 1H, 9-NH, exch). Elemental 

analysis calculated (%) for C19H19N5O∙0.90CH3OH: C, 65.98; H, 6.29; N, 19.33. Found: 

C, 65.81; H, 6.15; N, 19.31. 
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4-(6-Methoxy-3,4-dihydroquinolin-1(2H)-yl)-9H-pyrimido[4,5-b]indol-2-amine (2e). 

Using the general procedure described above, compound 234 (80 mg, 0.26 mmol), 6-

methoxy-1,2,3,4-tetrahydroquinoline 227 (120 mg, 0.78 mmol) and 1 drop of conc. HCl 

were heated to reflux in 30 mL of n-butanol for 60 h to provide 24.5 mg (26%) of 2e as 

an yellow solid. TLC Rf = 0.48 (CHCl3/MeOH, 15:1); mp 172.8–174.0 oC. 1H NMR (400 

MHz, DMSO-d6):  = 1.95‒2.01 (m, 2H, J = 6.2 and 6.6 Hz, CH2), 2.84‒2.87 (t, 2H, J = 

6.6 Hz, CH2), 3.69 (s, 3H, OCH3), 3.87‒3.90 (t, 2H, J = 6.2 Hz, N-CH2), 6.19‒6.21 (d, 

1H, Ar), 6.26 (s, 2H, 2-NH2, exch), 6.46‒6.48 (m, 1H, Ar), 6.57‒6.58 (m, 1H, Ar), 

6.71‒6.74 (t, 1H, Ar), 6.868‒6.874 (m, 1H, Ar), 7.04‒7.07 (t, 1H, Ar), 7.21‒7.23 (m, 1H, 

Ar), 11.31 (s, 1H, 9-NH, exch). Elemental analysis calculated (%) for 

C20H19N5O∙0.40CH3OH: C, 68.39; H, 5.79; N, 19.55. Found: C, 68.20; H, 5.55; N, 19.53. 

 

N4-(4-Ethoxyphenyl)-N4-methyl-9H-pyrimido[4,5-b]indole-2,4-diamine (3e).  

In a 100 mL round-bottomed flask, compound 234 (80 mg, 0.26 mmol), 4-ethoxy-N-

methylaniline 236 (120 mg, 0.78 mmol) and 1 drop of conc. HCl in 30 mL isopropanol 

were heated to reflux for 120 h. After cooling to rt, silica gel (500 mg) was added, and 

isopropanol was removed under reduced pressure. The dry residue was dissolved in 

methanol, basified with ammonia in methanol, and silica gel was added. The solvent was 

removed by evaporation to yield a silica gel plug. The plug was loaded on top of a silica 

gel column in chloroform (the weight of the silica was 15 times that of the plug). 

Purification was performed by flash chromatography using 0.5% methanol in chloroform 

and the fractions containing the product (TLC) were pooled and the solvent was 

evaporated to afford to provide 63 mg (72%) of 3e178 as a white solid. TLC Rf = 0.43 
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(CHCl3/MeOH, 15:1); mp 238.8−239.6 oC. 1H NMR (400 MHz, DMSO-d6):  = 

1.29‒1.32 (t, 3H, J = 6.9 Hz, CH3), 3.50 (s, 3H, N-CH3), 3.97‒4.02 (q, 2H, J = 6.9 Hz, 

CH2), 5.76‒5.78 (d, 1H, Ar), 6.22 (s, 2H, 2-NH2, exch), 6.53‒6.57 (t, 1H, Ar), 6.88‒6.90 

(m, 2H, Ar), 6.95‒6.98 (t, 1H, Ar), 7.13‒7.15 (m, 3H, Ar), 11.24 (s, 1H, 9-NH, exch). 

Elemental analysis calculated (%) for C19H19N5O: C, 68.45; H, 5.74; N, 21.01. Found: C, 

68.40; H, 5.61; N, 21.01. 

 

N4-Methyl-N4-(4-(methylthio)phenyl)-9H-pyrimido[4,5-b]indole-2,4-diamine (1f).  

In a round bottom flask, compound 234 (110 mg, 0.36 mmol), N-methyl-4-

(methylthio)aniline 237 (223 mg, 1.45 mmol) and 2 drops of conc. HCl in 50 mL of n-

butanol were heated to reflux for 48 h. After cooling to rt, silica gel (500 mg) was added, 

and isopropanol was removed under reduced pressure. The dry residue was dissolved in 

methanol, basified with ammonia in methanol, and silica gel was added. The solvent was 

removed by evaporation to yield a silica gel plug. Purification was performed by flash 

chromatography using 0.5% methanol in chloroform and the fractions containing the 

product (TLC) were pooled and the solvent was evaporated to afford to provide 86 mg 

(72%) of 1f as an off-white solid. TLC Rf = 0.44 (CHCl3/MeOH, 15:1); mp 248.2–248.8 

oC. 1H NMR (400 MHz, DMSO-d6):  = 2.44 (s, 3H, SCH3), 3.54 (s, 3H, NCH3), 

5.90‒5.92 (d, 1H, Ar), 6.23 (s, 2H, 2-NH2, exch), 6.57‒6.59 (t, 1H, Ar), 6.99‒7.03 (m, 

1H, Ar), 7.12‒7.14 (m, 2H, Ar), 7.17‒7.19 (m, 1H, Ar), 7.22‒7.24 (m, 2H, Ar), 11.31 (s, 

1H, 9-NH, exch). Elemental analysis calculated (%) for C18H17N5S: C, 64.45; H, 5.11; N, 

20.88; S, 9.56. Found: C, 64.22; H, 5.18; N, 20.88; S, 9.38. 
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Ethyl 2-(2-nitrophenyl)-2-cyanoacetate (239).  

To an ice cold solution of ethyl cyanoacetate (14.36 g, 126.94 mmol) in anhydrous THF 

(170 mL) under argon atmosphere, was added potassium tert-butoxide (14.24 g, 126.94 

mmol). Thus formed white suspension was stirred for 15 min and then 1-chloro-2-nitro-

benzene 238 (10.00 g, 63.47 mmol) was added. The suspension was heated to reflux for 

48 h after which 200 mL water was added and acidified to pH 2 with conc. HCl.  The 

mixture was extracted with ether (250 mL × 3) and then the combined organic phase was 

dried (anhydrous sodium sulfate) and concentrated to give a dark yellow colored liquid. 

Flash chromatography using 10:1 hexane:ethyl acetate in a column packed with silica gel, 

four times the weight of the dark oil, provided 12.75 g (86%) of 239 as a viscous yellow 

liquid. TLC Rf = 0.32 (hexane/EtOAc, 3:1). 1H NMR (400 MHz, DMSO-d6):  = 

1.23‒1.26 (t, 3H, CH3), 4.16‒4.24 (q, 2H, CH2), 5.58 (s, 1H, CH), 7.58‒7.62 (m, 1H, Ar), 

7.68‒7.72 (m, 2H, Ar), 8.15‒8.17 (d, 1H, Ar). 1H NMR agreed well with the literature 

reported129 values. 

 

Ethyl 2-amino-1H-indole-3-carboxylate (18).  

Compound 239 (12.75 g, 54.44 mmol) in 230 mL glacial acetic acid, was treated with a 

single charge of 8.5 g of zinc dust. The mixture was heated at 55 °C for 2 h and 4 g of Zn 

dust was added. After stirring at 55 °C for another 4 h, the reaction mixture was cooled 

and filtered through a pad of Celite. The pad was washed with acetic acid and the filtrate 

was concentrated to a residue that was neutralized with saturated Na2CO3 solution. The 

precipitate was filtered, dried over P2O5 and was dissolved in acetone. To this solution 

was added 15 g silica gel and the solvent was removed under reduced pressure to afford a 
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silica gel plug. Purification was done by flash chromatography eluting with 1% methanol 

in CHCl3. Fractions containing the product (TLC) were pooled and evaporated to give 

6.67 g (60%) of 18 as an off-white solid. TLC Rf = 0.65 (CHCl3/MeOH, 10:1); mp 178.9–

180.1 °C (lit.208 179.0–181.0 °C). 1H NMR (400 MHz, DMSO-d6):  = 1.31‒1.34 (t, 3H, 

CH3), 4.20‒4.25 (q, 2H, CH2), 6.67 (s, 2H, 2-NH2, exch), 6.86‒6.88 (t, 1H, Ar), 

6.89‒6.97 (t, 1H, Ar), 7.10‒7.12 (d, 1H, Ar), 7.54‒7.56 (d, 1H, Ar), 10.64 (s, 1H, 1-NH, 

exch). Elemental analysis calculated (%) for C11H12N2O2: C, 64.69; H, 5.92; N, 13.72. 

Found: C, 64.64; H, 6.08; N, 13.66. 1H NMR agreed well with the literature reported208 

values. 

 

2-[(1-Iminoethyl)amino]-1H-indole-3-carboxylic acid ethyl ester, hydrochloride (21). 

Dry HCl gas was bubbled into a suspension of 18 (1.0 g, 4.9 mmol) and CH3CN (65 mL) 

for 1.5 h. The mixture was then heated to reflux for 2.5 h and then cooled to 25 °C. The 

precipitate was collected and dried to give 1.2 g of 21 as a white hygroscopic solid. mp 

>300 °C (lit.130 >300 °C). 1H NMR (400 MHz, DMSO-d6):  = 1.32-1.36 (t, 3H, CH3, J = 

7.1 Hz), 2.43 (br, 3H, CH3), 4.26‒4.32 (q, 2H, CH2, J = 7.1 Hz), 7.24‒7.32 (m, 2H, Ar), 

7.49‒7.51 (d, 1H, Ar, J = 7.56 Hz), 8.04‒8.06 (d, 1H, Ar, J = 7.51 Hz), 9.0 (br, 1H, 2-

NH), 10.05 (br, 1H, 1-NH, exch), 12.06 (br, 1H, 1'-NH, exch), 12.75 (br, 1H, HCl, exch). 

1H NMR agreed well with the literature reported130 values. This material was used 

directly for the next step without further purification.  

 

2-Methyl-3H-pyrimido[4,5-b]indol-4(9H)-one (23).  

A solution of 21 (1.2 g, 4.3 mmol), EtOH (350 mL), and 10% aq NaOH (35 mL) was 
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heated to reflux for 6 h. The cooled solution was concentrated to a residue that was 

diluted with 25 mL of H2O. The solution was adjusted to pH 2 with 3N HCl solution and 

then stored at 25 °C for 30 min. The precipitated solid was collected, dissolved in 

methanol and then was added 2.5 g of silica gel. The solvent was removed under reduced 

pressure to provide a silica gel plug, which was purified by flash chromatography eluting 

with 2% and 3% methanol in chloroform. Fractions containing the product (TLC) were 

pooled and evaporated to give 0.96 g (77% over two steps) of 23 as a white solid. TLC Rf 

= 0.51 (CHCl3/MeOH, 10:1); mp >275 °C (lit.130 >275 °C). 1H NMR (400 MHz, DMSO-

d6):  = 2.41 (s, 3H, 2-CH3), 7.18‒7.22 (t, 1H, Ar), 7.27‒7.31 (t, 1H, Ar), 7.43‒7.45 (d, 

1H, Ar), 7.93‒7.94 (d, 1H, Ar), 11.98 (s, 1H, 3-NH, exch), 12.12 (s, 1H, 9-NH, exch). 

Elemental analysis calculated (%) for C11H9N3O·0.39CH3OH: C, 64.62; H, 5.03; N, 

19.85. Found: C, 64.73; H, 4.88; N, 19.64. 1H NMR agreed well with the literature 

reported130 values. 

 

4-Chloro-2-methyl-9H-pyrimido[4,5-b]indole (240).  

In a 250 mL round-bottomed flask was added 23 (1.04 g, 4.9 mmol) and 150 mL of 

POCl3. The reaction mixture was heated at 120 °C for 5.5 h. The POCl3 was evaporated 

and the mixture was neutralized using aqueous NH4OH solution leading to a precipitate. 

The precipitate was filtered, washed with cold water, dried and was dissolved in 

methanol. To the solution was added silica and solvent was removed under reduced 

pressure to provide a silica gel plug. The plug was purified by flash chromatography 

using chloroform and 1% methanol in chloroform as the eluent. Fractions containing the 

product (TLC) were pooled and evaporated to give 650 mg (79%) of 240 as an off-white 
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solid. TLC Rf = 0.69 (CHCl3/MeOH, 10:1); mp 286.0−286.4 oC. 1H NMR (400 MHz, 

DMSO-d6):  = 2.69 (s, 3H, 2-CH3), 7.38‒7.42 (m, 1H, Ar), 7.57‒7.62 (m, 2H, Ar), 

8.22‒8.23 (d, 1H, Ar), 12.56 (s, 1H, 9-NH, exch). Elemental analysis calculated (%) for 

C11H8ClN3: C, 60.70; H, 3.70; N, 19.31; Cl, 16.29. Found: C, 60.68; H, 3.81; N, 19.11; 

Cl, 16.35.  

 

N-(4-Methoxyphenyl)-N,2-dimethyl-9H-pyrimido[4,5-b]indol-4-amine (2f).  

To a round-bottomed flask were added 240 (120 mg, 0.55 mmol), 4-methoxy-N-

methylaniline 241 (302.5 mg, 2.2 mmol), 2 drops of conc. HCl and 25 mL of n-butanol. 

The reaction mixture was heated to reflux for 72 h. After cooling to rt, silica gel (500 mg) 

was added, and n-butanol was removed under reduced pressure to afford a silica gel plug. 

Flash chromatography was done using 0.5% and 1% methanol in chloroform. Fractions 

containing the product (TLC) were pooled and the solvent was evaporated to afford 137 

mg (78%) of 2f as an off-white solid. TLC Rf = 0.82 (CHCl3/MeOH, 5:1); mp 

239.1−239.9 oC. 1H NMR (400 MHz, DMSO-d6):  = 2.59 (s, 3H, 2-CH3), 3.59 (s, 3H, 

OCH3), 3.75 (s, 3H, NCH3), 5.89‒5.90 (d, 1H, C5-CH), 6.66‒6.69 (t, 1H, Ar), 6.92‒6.94 

(d, 2H, Ar), 7.14‒7.17 (m, 1H, Ar), 7.19‒7.21 (d, 2H, Ar), 7.31‒7.33 (d, 1H, Ar), 11.85 

(s, 1H, 9-NH, exch). Elemental analysis calculated (%) for C19H18N4O: C, 71.68; H, 5.70; 

N, 17.60. Found: C, 71.91; H, 5.70; N, 17.69. 

 

3H-Pyrimido[4,5-b]indol-4(9H)-one (242).  

Compound 18 (400 mg, 1.96 mmol) and formamide (6 ml, 150 mmol) were taken in a 25 

mL round bottom flask. The reaction mixture was stirred at 190 oC for 12 h. The reaction 
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mixture was cooled down, filtered, washed well with water and dried under reduced 

pressure. The dried precipitate was dissolved in 3 mL DMF and then precipitated using 

30 mL Et2O. The precipitate was collected, washed with Et2O and dried over P2O5 to give 

292 mg (73%) of 242 as a brown solid. TLC Rf = 0.48 (CHCl3/MeOH, 5:1); mp  >300 oC 

(lit.129 >300 °C). 1H NMR (400 MHz, DMSO-d6):  = 2.74 (s, 0.3H, “DMF” N-CH3), 

2.89 (s, 0.3H, “DMF” NCH3), 7.22‒7.25 (m, 1H, Ar), 7.31‒7.35 (m, 1H, Ar), 7.47‒7.49 

(d, 1H, Ar), 7.96 (s, 0.1H, “DMF” H), 7.98‒8.00 (d, 1H, Ar), 8.12 (s, 1H, C2-CH), 12.19 

(s, 1H, 3-NH, exch), 12.22 (br, 1H, 9-NH, exch). Elemental analysis calculated (%) for 

C10H7N3O·0.2HCON(CH3)2: C, 63.72; H, 4.24; N, 22.43. Found: C, 63.70; H, 4.07; N, 

22.16. 1H NMR agreed well with the literature reported129 values. 

 

4-Chloro-9H-pyrimido[4,5-b]indole (243).  

In a 100 mL round bottom flask was added 242 (340 mg, 1.70 mmol) and 35 mL of 

POCl3. The reaction mixture was heated to reflux for 4 h. The POCl3 was evaporated and 

the mixture was neutralized using aqueous NH4OH solution leading to a precipitate. The 

precipitate was filtered, washed with cold water, dried and was dissolved in methanol. To 

the solution was added silica and solvent was removed under reduced pressure to provide 

a silica gel plug. Flash chromatography was done using chloroform and 1% methanol in 

chloroform. Fractions containing the product (TLC) were pooled and evaporated to give 

310 mg (90%) of 243 as an off-white solid. TLC Rf = 0.64 (CHCl3/MeOH, 10:1); mp 

>250 oC. 1H NMR (400 MHz, DMSO-d6):  = 7.42‒7.46 (m, 1H, Ar), 7.64‒7.65 (m, 2H, 

Ar), 8.29‒8.31 (d, 1H, Ar), 8.79 (s, 1H, C2-CH), 12.80 (s, 1H, 9-NH, exch). 1H NMR 

agreed well with the literature reported129 values. 
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N-(4-Methoxyphenyl)-N-methyl-9H-pyrimido[4,5-b]indol-4-amine (3f).  

To a 100 mL round bottom flask were added 243 (102 mg, 0.5 mmol), 4-methoxy-N-

methylaniline 241 (274 mg, 2 mmol), 2 drops of conc. HCl and 30 mL of n-butanol. The 

reaction mixture was heated to reflux for 72 h. After cooling to rt, silica gel (500 mg) was 

added, and n-butanol was removed under reduced pressure. Purification was performed 

by flash chromatography using 1% methanol in chloroform as the eluent and the fractions 

containing the product (TLC) were pooled and the solvent was evaporated to afford 58 

mg (38%) of 3f as an off-white solid. TLC Rf  = 0.74 (CHCl3/MeOH, 10:1); mp >250 oC. 

1H NMR (400 MHz, DMSO-d6):  = 3.61 (s, 3H, OCH3), 3.76 (s, 3H, NCH3), 5.95‒5.96 

(d, 1H, C5-CH), 6.70‒6.73 (t, 1H, Ar), 6.93‒6.95 (m, 2H, Ar), 7.19‒7.23 (m, 3H, Ar), 

7.36‒7.37 (d, 1H, Ar), 8.57 (s, 1H, C2-CH), 12.07 (s, 1H, 9-NH, exch). Elemental 

analysis calculated (%) for C18H16N4O: C, 71.04; H, 5.30; N, 18.41. Found: C, 70.92; H, 

5.33; N, 18.24. 

 

General procedure for the synthesis of 5-(aryl sulfanyl)-9H-pyrimido[4,5-b]indole-

2,4-diamines 1g−3g and 5g−7g.  

Compound 10 (50 mg, 0.21 mmol), the appropriate thiol (0.84 mmol), copper iodide (162 

mg, 0.84 mmol), L-proline (98 mg, 0.84 mmol) and potassium carbonate (118 mg, 0.84 

mmol) were added to a Biotage® microwave vial. Around 3.5‒4 mL DMF was added as 

solvent and the tube was sealed. The reaction was run in a microwave at 180 C until the 

TLC showed completion of the reactant 10. After cooling to room temperature, the 

reaction mixture was transferred on top of a silica gel column and eluted with 1%, 2%, 
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3% and 4% methanol in chloroform. Fractions containing the product (TLC) were pooled 

and evaporated to afford 1g−3g and 5g−7g in 47‒62% yield. 

 

2-Amino-5-(phenylsulfanyl)-3,9-dihydro-4H-pyrimido[4,5-b]indol-4-one (1g).  

Using the general procedure described above, the reaction of 10 with benzene thiol 244 

for 12 h afforded 39 mg (60%) of 1g as a brown solid. TLC Rf = 0.39 (CHCl3/MeOH, 5:1 

with 2 drops of conc. NH4OH); mp 247.0‒247.4 oC (lit.193 247 oC). 1H NMR (400 MHz, 

DMSO-d6):  = 6.51‒6.54 (d, 1H, C6-CH), 6.52 (br, 2H, 2-NH2, exch), 6.95‒6.98 (t, 1H, 

J = 6.0 Hz, C7-CH), 7.07‒7.09 (d, 1H, J = 6.0 Hz, C8-CH), 7.31‒7.39 (m, 5H, Ar), 10.35 

(s, 1H, 3-NH, exch), 11.55 (s, 1H, 9-NH, exch). Elemental analysis calculated (%) for 

C16H12N4OS∙0.23CH3OH: C, 61.74; H, 4.12; N, 17.75; S, 10.16. Found: C, 61.50; H, 

4.03; N, 17.81; S, 10.54. 1H NMR agreed well with the literature reported193 values. 

 

2-Amino-5-(2-naphthylsulfanyl)-3,9-dihydro-4H-pyrimido[4,5-b]indol-4-one (2g). 

Using the general procedure described above, the reaction of 10 with naphthalene-2-thiol 

245 for 4.5 h afforded 38 mg (50%) of 2g as an off-white solid. TLC Rf = 0.47 

(CHCl3/MeOH, 5:1 with 2 drops of conc. NH4OH); mp >250 oC (lit.193 >250 oC). 1H 

NMR (400 MHz, DMSO-d6):  = 6.54 (br, 2H, 2-NH2, exch), 6.55‒6.57 (d, 1H, C6-CH), 

6.94‒6.97 (t, 1H, C7-CH), 7.09‒7.11 (d, 1H, C8-CH), 7.426‒7.429 (d, 1H, Ar), 

7.52‒7.54 (m, 2H, Ar), 7.87‒7.93 (m, 3H, Ar), 7.981‒7.983 (d, 1H, Ar), 10.36 (s, 1H, 3-

NH, exch), 11.58 (s, 1H, 9-NH, exch). Elemental analysis calculated (%) for 

C20H14N4OS∙0.6CH3OH: C, 65.52; H, 4.38; N, 14.84; S, 8.49. Found: C, 65.31; H, 4.35; 

N, 14.99; S, 8.87. 1H NMR agreed well with the literature reported193 values. 
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2-Amino-5-(p-tolylthio)-3H-pyrimido[4,5-b]indol-4(9H)-one (3g).  

Using the general procedure described above, the reaction of 10 with 4-methoxyphenyl 

thiol 246 for 16 h afforded 43 mg (62%) of 3g as a brown solid. TLC Rf = 0.42 

(CHCl3/MeOH, 5:1 with 2 drops of conc. NH4OH); mp >250 oC (lit.192 >250 oC). 1H 

NMR (400 MHz, DMSO-d6):  = 2.34 (s, 3H, CH3), 6.36‒6.38 (d, 1H, C6-CH), 6.52 (br, 

2H, 2-NH2, exch), 6.90‒6.93 (t, 1H, C7-CH), 7.01‒7.03 (d, 1H, J = 6.0 Hz, C8-CH), 

7.23‒7.25 (d, 2H, Ar), 7.33‒7.34 (d, 2H, Ar), 10.37 (s, 1H, 3-NH, exch), 11.54 (s, 1H, 9-

NH, exch). Elemental analysis calculated (%) for C17H14N4OS∙0.3CH3OH: C, 62.59; H, 

4.61; N, 16.88; S, 9.66. Found: C, 62.24; H, 4.42; N, 17.00; S, 9.81. 1H NMR agreed well 

with the literature reported209 values. 

 

2-Amino-5-((4-methoxyphenyl)thio)-3H-pyrimido[4,5-b]indol-4(9H)-one (5g). 

Using the general procedure described above, the reaction of 10 with 4-methoxyphenyl 

thiol 248 for 16 h afforded 39 mg (54%) of 97 as a brown solid. TLC Rf = 0.47 

(CHCl3/MeOH, 5:1 with 2 drops of conc. NH4OH); mp >250 oC (lit.192 >250 oC). 1H 

NMR (400 MHz, DMSO-d6):  = 3.81 (s, 3H, CH3), 6.23‒6.24 (d, 1H, J = 6.8 Hz, C6-

CH), 6.52 (br, 2H, 2-NH2, exch), 6.87‒6.91 (t, 1H, J = 7.6 Hz, C7-CH), 6.96‒6.98 (d, 1H, 

J = 6.8 Hz, C8-CH), 7.02‒7.05 (d, 2H, J = 8.8 Hz, Ar), 7.43‒7.45 (d, 2H, J = 8.8 Hz, Ar), 

10.40 (s, 1H, 3-NH, exch), 11.50 (s, 1H, 9-NH, exch). HPLC analysis: retention time = 

27.99 min; peak area, 95.21%; eluent A, H2O; eluent B, ACN; gradient elution (100% 

H2O to 10% H2O) over 60 min with a flow rate of 0.5 mL/min and detection at 254 nm; 

column temperature, rt. 1H NMR agreed well with the literature reported209 values. 
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2-Amino-5-((4-fluorophenyl)thio)-3H-pyrimido[4,5-b]indol-4(9H)-one (6g).  

Using the general procedure described above, the reaction of 10 with 4-fluorophenyl thiol 

249 for 16 h afforded 35 mg (51%) of 95 as a brown solid. TLC Rf = 0.47 (CHCl3/MeOH, 

5:1 with 2 drops of conc. NH4OH); mp >300 oC (lit.192 >300 oC). 1H NMR (400 MHz, 

DMSO-d6):  = 6.42 (d, 1H, J = 8.0 Hz, C7-CH), 6.52 (br, 2H, 2-NH2, exch), 6.94 (t, 1H, 

J = 8.0 Hz, C6-CH), 7.04‒7.06 (m, 1H, C8-CH), 7.21‒7.26 (m, 2H, Ar), 7.42‒7.46 (m, 

2H, Ar), 10.36 (s, 1H, 3-NH, exch), 11.54 (s, 1H, 9-NH, exch). 1H NMR agreed well with 

the literature reported209 values. 

 

2-Amino-5-((4-phenoxyphenyl)thio)-3H-pyrimido[4,5-b]indol-4(9H)-one (7g).  

Using the general procedure described above, the reaction of 10 with 4-phenoxybenzene 

thiol 250 for 12 h afforded 40 mg (47%) of 7g as a brown solid. TLC Rf = 0.46 

(CHCl3/MeOH, 5:1 with 2 drops of conc. NH4OH); mp >300 oC. 1H NMR (400 MHz, 

DMSO-d6):  = 6.41‒6.43 (d, 1H, C6-CH); 6.56 (br, 2H, 2-NH2, exch); 6.94‒6.98 (t, 1H, 

Ar); 7.02‒7.05 (m, 3H, Ar); 7.09‒7.11 (m, 2H, Ar); 7.18‒7.21 (t, 1H, Ar); 7.42‒7.46 (m, 

4H, Ar); 10.40 (s, 1H, 3-NH, exch); 11.54 (s, 1H, 9-NH, exch). Elemental analysis 

calculated (%) for C22H16N4O2S·0.26NH4OH·0.40HCl: C, 62.30; H, 4.21; N, 14.07; S, 

7.56; Cl, 3.35. Found: C, 62.30; H, 4.30; N, 14.04; S, 7.64; Cl, 3.73. 

 

2-Amino-5-(phenylthio)-3H-pyrimido[4,5-b]indol-4(9H)-one hydrochloride (1g·HCl).  

Compound 1g (50 mg) was dissolved in chloroform (2 mL), ethyl acetate (5 mL), 

methanol (0.2 mL) and diethyl ether (2 mL), and then HCl gas was bubbled into the 

solution till precipitation ceased. The yellow solid was collected by filtration and dried 
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over P2O5 to afford 32 mg of 1g∙HCl in 60% yield. Mp >300 oC. 1H NMR (400 MHz, 

DMSO-d6):  = 6.52‒6.54 (m, 1H, Ar), 6.60 (br, 3H, 2-NH3
+, exch), 6.98‒7.00 (m, 1H, 

Ar), 7.11‒7.13 (m, 1H, Ar), 7.38‒7.39 (m, 5H, Ar), 10.61 (s, 1H, 3-NH, exch), 11.72 (s, 

1H, 9-NH, exch). HRMS (ESI): m/z calculated for C16H13N4OS∙HCl + H+ [M+H+]: 

309.0810. Found: 309.0804. HPLC analysis: retention time = 24.80 min; peak area, 

96.09%; eluent A, H2O; eluent B, ACN; gradient elution (100% H2O to 10% H2O) over 

60 min with a flow rate of 0.5 mL/min and detection at 254 nm; column temperature, rt. 

 

2-Amino-5-(naphthalen-2-ylthio)-3H-pyrimido[4,5-b]indol-4(9H)-one hydrochloride  

(2g·HCl).  

Compound 2g (50 mg) was dissolved in N,N-dimethylformamide (2 mL), dioxane (2 mL) 

and diethyl ether (20 mL), and then HCl gas was bubbled into the solution till 

precipitation ceased. The white solid was collected by filtration and dried over P2O5 to 

afford 30 mg of 2g∙HCl in 59% yield. Mp >300 oC. 1H NMR (400 MHz, DMSO-d6):  = 

6.56‒6.58 (m, 1 H, Ar), 6.70 (br, 3H, 2-NH3
+, exch), 6.95‒6.99 (m, 1H, Ar), 7.12‒7.14 

(m, 1H, Ar), 7.41‒7.43 (m, 1H, Ar), 7.52‒7.55 (m, 2H, Ar), 7.87‒7.99 (m, 4H, Ar), 10.59 

(s, 1H, 3-NH, exch), 11.72 (s, 1H, 9-NH, exch). Elemental analysis calculated (%) for 

C20H15ClN4OS∙0.14C4H8O2∙0.05HCl: C, 60.37; H, 3.98; N, 13.70; Cl, 9.10; S, 7.84 

Found: C, 60.19; H, 4.00; N, 13.88; Cl, 9.01; S, 7.78.  
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VI. SUMMARY 

This dissertation describes the design and synthesis of following structural classes of 

compounds either as single agents with combination chemotherapy potential or as tubulin 

inhibitors or as selective T. gondii TS inhibitors: 

1. 2,4-Diamino-5-thioaryl-9H-pyrimido[4,5-b]indoles  

2. N,N-Disubstituted-5-methylfuro[2,3-d]pyrimidin-4-amines  

3. N4-Aryl-5-chloro-2,4-diamino-pyrimido[4,5-b]indoles  

4. 2,4-Disubstituted-9H-pyrimido[4,5-b]indole-4-amines  

5. 2-Amino-4-oxo-5-thioaryl-9H-pyrimido[4,5-b]indoles  

From these projects, a total of forty two novel compounds were synthesized and 

characterized, and among them, thirty six target compounds were submitted for various 

biological assays. In addition, five selective T. gondii TS inhibitors were resynthesized 

and submitted for further preclinical and X-ray crystallographic studies. These 

compounds are as follows: 

1. 5-(4-Fluorophenylthio)-9H-pyrimido[4,5-b]indole-2,4-diamine (1a) 

2. 5-(4-Trifluoromethylphenylthio)-9H-pyrimido[4,5-b]indole-2,4-diamine (2a)  

3. 5-(m-Tolylthio)-9H-pyrimido[4,5-b]indole-2,4-diamine (3a) 

4. 5-(o-Tolylthio)-9H-pyrimido[4,5-b]indole-2,4-diamine (4a)  

5. 5-(3,4-Dimethylphenylthio)-9H-pyrimido[4,5-b]indole-2,4-diamine (5a)  

6. 5-(3-Methoxyphenylthio)-9H-pyrimido[4,5-b]indole-2,4-diamine (6a) 

7. 5-(o-Methoxyphenylthio)-9H-pyrimido[4,5-b]indole-2,4-diamine (7a)  

8. N-Ethyl-N-(4-methoxyphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (1b)  

9. N-Isopropyl-N-(4-methoxyphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (2b)  



www.manaraa.com

 149 

10. N-(4-Methoxyphenyl)-5-methyl-N-propylfuro[2,3-d]pyrimidin-4-amine (3b) 

11. N-Butyl-N-(4-methoxyphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (4b) 

12. N-Methyl-N-(4-ethylphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (1c) 

13. N,5-Dimethyl-N-(4-(methylthio)phenyl)furo[2,3-d]pyrimidin-4-amine (2c)  

14. N1,N4-Dimethyl-N1-(5-methylfuro[2,3-d]pyrimidin-4-yl)benzene-1,4-diamine (3c)  

15. N1,N1,N4-Trimethyl-N4-(5-methylfuro[2,3-d]pyrimidin-4-yl)benzene-1,4-diamine (4c) 

16. N,5-Dimethyl-N-(4-nitrophenyl)furo[2,3-d]pyrimidin-4-amine (5c) 

17. 5-Chloro-N4-methyl-N4-phenyl-9H-pyrimido[4,5-b]indole-2,4-diamine (1d) 

18. 5-Chloro-N4-methyl-N4-p-tolyl-9H-pyrimido[4,5-b]indole-2,4-diamine (2d)  

19. 5-Chloro-N4-(4-chlorophenyl)-N4-methyl-9H-pyrimido[4,5-b]indole-2,4-diamine (3d) 

20. 5-Chloro-N4-3-methoxyphenyl-N4-methyl-9H-pyrimido[4,5-b]indole-2,4-diamine 

(4d) 

21. 5-Chloro-N4-3-fluorophenyl-N4-methyl-9H-pyrimido[4,5-b]indole-2,4-diamine (5d)  

22. 5-Chloro-4-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-9H-pyrimido[4,5-b]indol-2-

amine (6d) 

23. N4-Ethyl-N4-(4-methoxyphenyl)-9H-pyrimido[4,5-b]indole-2,4-diamine (1e) 

24. 4-(6-Methoxy-3,4-dihydroquinolin-1(2H)-yl)-9H-pyrimido[4,5-b]indol-2-amine (2e) 

25. N4-(4-Ethoxyphenyl)-N4-methyl-9H-pyrimido[4,5-b]indole-2,4-diamine (3e) 

26. N4-Methyl-N4-(4-(methylthio)phenyl)-9H-pyrimido[4,5-b]indole-2,4-diamine (1f) 

27. N-(4-Methoxyphenyl)-N,2-dimethyl-9H-pyrimido[4,5-b]indol-4-amine (2f) 

28. N-(4-Methoxyphenyl)-N-methyl-9H-pyrimido[4,5-b]indol-4-amine (3f) 

29. 2-Amino-5-(phenylsulfanyl)-3,9-dihydro-4H-pyrimido[4,5-b]indol-4-one (1g) 

30. 2-Amino-5-(2-naphthylsulfanyl)-3,9-dihydro-4H-pyrimido[4,5-b]indol-4-one (2g) 
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31. 2-Amino-5-(p-tolylthio)-3H-pyrimido[4,5-b]indol-4(9H)-one (3g) 

32. 2-Amino-5-((4-methoxyphenyl)thio)-3H-pyrimido[4,5-b]indol-4(9H)-one (5g) 

33. 2-Amino-5-((4-fluorophenyl)thio)-3H-pyrimido[4,5-b]indol-4(9H)-one (6g) 

34. 2-Amino-5-((4-phenoxyphenyl)thio)-3H-pyrimido[4,5-b]indol-4(9H)-one (7g) 

35. 2-Amino-5-(phenylthio)-3H-pyrimido[4,5-b]indol-4(9H)-one hydrochloride 

(1g·HCl).  

36. 2-Amino-5-(naphthalen-2-ylthio)-3H-pyrimido[4,5-b]indol-4(9H)-one hydrochloride  

(2g·HCl).  

37. N-(4-Ethylphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (213).  

38. 5-Methyl-N-(4-(methylthio)phenyl)furo[2,3-d]pyrimidin-4-amine (214).  

39. N-(4-Nitrophenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (215).  

40. N1-Methyl-N4-(5-methylfuro[2,3-d]pyrimidin-4-yl)benzene-1,4-diamine (218).  

41. N1,N1-Dimethyl-N4-(5-methylfuro[2,3-d]pyrimidin-4-yl)benzene-1,4-diamine (219).  

During this study, a novel synthetic route was successfully optimized for the 

synthesis of target compounds 1a‒7a. Also, it led to the resynthesis of gram quantities of 

lead compounds 1 and 2 with significant improvement in overall yield over the reported 

procedure. Ullmann coupling conditions were explored and successfully employed as a 

key step to obtain target compounds 2c‒5c. Optimization of Ullmann coupling resulted in 

the resynthesis of 1g−3g, 5g and 6g with highly improved yields over previous methods.  

Compounds 1a‒7a, 1b‒4b and 1c‒5c were designed and synthesized as single 

agents which combine cytostatic mechanism (via RTK inhibition) with a cytotoxic 

mechanism (via TS or tubulin inhibition). Pyrimido[4,5-b]indoles 1a‒7a were evaluated 

against multiple RTKs using whole cell assays and the 4'-CF3 analog 2a and the 3',4'-
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diMe analog 5a were the most potent inhibitors of VEGFR-2 and EGFR kinases. 

Furo[2,3-d]pyrimidines 1b‒4b and 1c‒5c were tested as inhibitors of tubulin and multiple 

RTKs (whole cell assays). Compounds 1b, 3b and 2c‒4c had potent multi-RTK 

inhibition along with potent anti-tubulin activity, thus making them single agents with 

combination chemotherapy potential. Compounds 2b (N4-iPr-4'-OMe) and 1c (N4-Me-4'-

Et) had potent RTK inhibition with weak microtubule depolymerizing activity. Therefore, 

compounds 2b and 1c can be used in anticancer chemotherapy either alone as RTK 

inhibitors or in combination chemotherapy with other cytotoxic agents.  

4-Anilino-pyrimido[4,5-b]indoles 1d‒6d, 1e‒3e and 1f‒3f were evaluated as tubulin 

inhibitors and as agents that can overcome Pgp and III-tubulin mediated drug resistance. 

Structural requirements of pyrimido[4,5-b]indoles for tubulin inhibition are: alkyl group 

at N4-position, hydrogen at 5-position and alkoxy group at 4'-position.  

2-Amino-4-oxo-5-thioaryl-pyrimido[4,5-b]indoles 1g‒7g were tested in tgTS, hTS 

and T. gondii cell culture assays. Compounds 1g, 4g and 7g are nanomolar inhibitors of 

tgTS with up to a remarkable 122-fold selectivity for tgTS over hTS. These compounds 

are the only tgTS-selective inhibitors known till date and also provide a new target (TS) 

to combat T. gondii infection.  

Pyrimido[4,5-b]indoles described in this dissertation represent one of the unique 

classes of molecules with diverse biological targets. 2-Amino-5-thioaryl-pyrimido[4,5-

b]indoles with 4-amino substitution are anticancer agents which inhibit TS and multiple 

RTKs where as those with 4-oxo substitution were tgTS-selective antiparasitic agents. 4-

Anilino-pyrimido[4,5-b]indoles are anticancer agents which inhibit tubulin and/or 

multiple RTKs.  
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VIII. APPENDIX 

A. Biological evaluations 

The biological evaluations of the compounds were performed by Dr. Susan 

Mooberry (tumor cell inhibitory assays, microtubule depolymerization assay and in vivo 

xenograft studies; Department of Pharmacology, University of Texas Health Science 

Center at San Antonio, San Antonio, TX 78229); Dr. Ernest Hamel (colchicine binding 

and bovine brain tubulin polymerization assays; Screening Technologies Branch, 

Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, 

Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, 

MD 21702); Dr. Michael Ihnat (RTK inhibitory assay, tumor cell inhibitory assays, CAM 

assay, in vivo xenograft and allograft studies; Department of Pharmaceutical Sciences, 

University of Oklahoma College of Pharmacy, Oklahoma City, OK 73117); Dr. Karen 

Anderson (tgTS inhibitory assay and X-ray crystallography studies; Department of 

Pharmacology, Yale University School of Medicine, New Haven, CT 06511); Dr. Sherry 

F. Queener (DHFR inhibitory and T. gondii cell culture studies; Department of 

Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 

46202); and National Cancer Institute (60 cell tumor cell line screening assay and in vivo 

toxicity study; NCI, Developmental Therapeutics Program).  

A.1 Biological data of 2,4-diamino-5-arylthio-9H-pyrimido[4,5-b]indoles  

Table 7 shows inhibitory data for target compounds 1a‒7a against EGFR, VEGFR-2 

and PDGFR-kinases. Kinase inhibition was performed in cell-based assays and 

therefore, it should be noted that cellular permeability might play a role in the activities 
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of these compounds. Whole cell assays were used for measuring RTK inhibition as these 

assays afford more meaningful results for translation to in vivo studies.  

Table 7. Inhibition of RTKs by target compounds 1a‒7a [Data kindly provided by Dr. 

Michael Ihnat, Department of Pharmaceutical Sciences, University of Oklahoma College 

of Pharmacy, OK 73117] 

Compd 

Inhibition of 

hTS 

(µM) 

EGFR 

(nM) 

VEGFR-2 

(nM) 

PDGFR-β 

(nM) 

1 (lead) 0.54 15.1 ± 2.5 22.6 ± 2.7 2.8 ± 0.3 

2 (lead) 0.39 10.41 ± 1.9 56.3 ± 8.2 40.3 ± 6.7 

1a n.d.a 26.9 ± 5.2 38.6 ± 5.2 76.9 ± 9.4 

2a n.d.a 11.3 ± 1.7 22.0 ± 3.7 50.0 ± 6.5 

3a n.d.a 27.0 ± 4.2 38.2 ± 7.0 86.1 ± 10.7 

4a n.d.a 23.6 ± 3.8 35.1 ± 6.6 73.1 ± 8.8 

5a n.d.a 12.6 ± 2.0 17.8 ± 1.9 55.8 ± 7.2 

6a n.d.a 24.2 ± 3.8 42.5 ± 6.9 70.1 ± 8.5 

7a n.d.a n.d.a n.d.a n.d.a 

Raltitrexed 0.38 
   

Sunitinib  172.1 ± 19.4 18.9 ± 2.7 83.1 ± 10.1 

Erlotinib  1.2 ± 0.2 124.7 ± 18.2  

an.d. not determined. 

The 4'-CF3 analog 2a and 3',4'-dimethyl analog 5a were the most potent inhibitors 

against EGFR and VEGFR-2 kinases with activities comparable to the lead compound 1 

where as 1a, 3a, 4a and 6a had 1.5-fold lower inhibition than 1 (Table 7). Compounds 3a 

and 4a with 3'- and 2'-methyl groups, respectively, displayed lower EGFR and VEGFR-2 

kinase inhibition than the 4'-Me analog 2, thus indicating the importance of the methyl 

group at para-position for activity. The 4'-CF3 analog 2a had a 2-fold increased VEGFR-
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2 inhibition than the 4'-Me analog 2 and had activity comparable to the 4'-Cl analog 181. 

In this series of compounds, incorporation of strong electron-withdrawing groups at para-

position of the thioaryl moiety gave higher VEGFR-2 potency while retaining EGFR 

inhibition. However, this improvement in activity cannot be entirely due to electron-

withdrawing effect because the 4'-F analog 1a was less active than the 4'-H analog 1. The 

3',4'-dimethyl analog 5a showed 3-fold higher anti-VEGFR-2 activity than the 4-Me 

analog 2. In the PDGFR-β inhibition assay, target compounds 1a–6a were 25‒40-fold 

less active than the lead compound 1 (Table 7). The data indicates that substitution on the 

thioaryl ring can be detrimental to PDGFR-β kinase inhibition.  

Lead compounds 1 and 2 were evaluated in MDA-MB-435 and 4T1 orthotopic 

breast cancer models.  

 
Figure 44. Compounds 1 (NZ-43) and 2 (NZ-311) significantly decreased primary tumor 

growth and tumor vascular density in the MDA-MB-435 flank xenograft model. Human 

BLBCs, MDA-MB-435, were implanted into the lateral flank of NCr athymic nu/nu nude 

mice at 500,000 cells, and the mice were treated with carrier, pemetrexed, sunitinib, 

pemetrexed + sunitinib or 1 (25 mg/kg) or 2 (35 mg/kg) twice weekly until the end of the 

experiment. Tumor size was assessed by measuring tumor length, width, and depth twice 
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weekly using Vernier calipers. Tumor volume was calculated with the ellipsoid formula: 

volume = 0.52 (length × width × depth) and graphically represented as days after 

implantation. Statistics on these graphs were two way ANOVA with repeated measures 

post-test. [Data kindly provided by Dr. Michael Ihnat, Department of Pharmaceutical 

Sciences, University of Oklahoma College of Pharmacy, OK 73117] 

In the MDA-MB-435 orthotopic xenograft model, compounds 1 (25 mg/kg) and 2 

(35 mg/kg) significantly decreased tumor volume better than the combination of 

pemetrexed (30 mg/kg) and sunitinib (30 mg/kg) (Figure 44). Based on the remarkable 

potency compared to the combination of pemetrexed and sunitinib, compounds 1 and 2 

are undergoing further preclinical evaluation. 

  
Figure 45. Compounds 1 (NZ-43) and 2 (NZ-311) decreased primary tumor growth and 

lung metastases in the 4T1 orthotopic breast model. *, P < 0.05 by one way ANOVA 

with a Neuman−Keuls post-test. 4T1-Lucerase/GFP tagged cells were implanted ortho-

topically into BALB/c mice at 7500 cells, and the mice were treated with carrier, 

docetaxel, or 1 or 2 at their MTDs twice weekly until the end of the experiment. (A) 

Tumor volume was calculated with the ellipsoid formula: volume = 0.52 (length × width 

× depth). (B) After 32 days, animals were euthanized and lungs were excised and 
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immediately imaged at 25× using the LumaScope fluorescent imaging system. The 

number of metastases in both lungs was counted visually and represented graphically. 

[Data kindly provided by Dr. Michael Ihnat, Department of Pharmaceutical Sciences, 

University of Oklahoma College of Pharmacy, OK 73117] 

Compounds 1 (25 mg/kg) and 2 (35 mg/kg) decreased tumor volume better than or 

equal to docetaxel (35 mg/kg) in the 4T1 triple negative orthotopic allograft model 

(Figure 45A). Also, compounds 1 and 2 significantly reduced tumor metastases compared 

to docetaxel (Figure 45B). Reduction of tumor metastases is important because many 

cancer patients die of metastatic disease. 

A.2 Biological data of 4-substituted 5-methyl-furo[2,3-d]pyrimidines  

Compounds 1b–4b and 1c–5c were first evaluated for their ability to depolymerize 

microtubules (Table 8). These compounds were also tested for their antiproliferative 

effects against MDA-MB-435 cell lines using the sulforhodamine B (SRB) assay. 

Compounds 1b–4b with different alkyl groups at the N4-position had decreased 

microtubule depolymerizing activity and IC50 values compared to the lead N4-methyl 

analog 182. The activity decreased with increased homologation and the N4-iPr analog 2b 

was 60-fold less active (IC50) than the N4-Et 1b.  

The N4-Me analogs 1c–5c with variations at the 4'-position were less active as 

microtubule depolymerizers than the lead 182. The 4'-ethyl analog 1c had 30-fold 

decreased activity than the 4'-methoxy 182, indicating the importance of a hydrogen bond 

acceptor at 4'-position. The 4'-SMe analog 2c, 4'-NHMe analog 3c and 4'-NMe2 analog 

4c, respectively, had 2-, 10- and 6-fold decreased microtubule depolymerizing activity 

than the 4'-OMe analog 182. In addition, compounds 2c–4c had 3‒18-fold lesser activity 
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in the MDA-MB-435 cell line. This data indicates that bioisosteric replacement of 4'-

OMe group is detrimental to tubulin inhibitory and antiproliferative activities. The 4'-

NO2 analog 5c, as expected, had no activity in the microtubule depolymerization assay. 

N4-Desmethyl intermediates 213–215, 218 and 219 were also tested for microtubule 

depolymerization and were inactive with EC50 >10 μM (Table 8). 

Table 8. Antiproliferative and microtubule depolymerizing effects of target compounds 

1b–4b and 1c–5c and intermediates 213–215, 218 and 219 [Data kindly provided by Dr. 

Susan Mooberry, Department of Pharmacology, University of Texas Health Science 

Center at San Antonio, TX 78229] 

Compd 
IC50 ± SD (nM) 

(MDA-MB-435)  

EC50 (nM) for microtubule 

depolymerization 

182 (lead) 4.3 ± 0.3 23.9 ± 5.6 

1b  8.1 ± 0.47 53 

2b  504 ± 28 EC50 >10 μM 

3b  27.3 ± 4.5 310 

4b 100.3 ± 6.5 340 

1c 183.1 ± 12.7 750 

2c 12.3  ± 0.9 45 

3c 73.7 ± 2.7 240 

4c 43.8 ± 4.2 140 

5c n.d. EC50 >10 μM 

213 n.d. EC50 >10 μM 

214 n.d. EC50 >10 μM 

215 n.d. EC50 >10 μM 

218 n.d. EC50 >10 μM 

219 n.d. EC50 >10 μM 

CA4 4.4 ± 0.46 9.8 

an.d. not determined. 
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Table 9. Effects of 1b‒4b and 2c on tubulin assembly and colchicine binding [Data 

kindly provided by Dr. Ernest Hamel, Division of Cancer Treatment and Diagnosis, 

Frederick National Laboratory for Cancer Research, National Cancer Institute, MD 

21702] 

Compd  
Inhibition of tubulin assembly  

(IC50 ± SD (M)) 

Inhibition of colchicine binding  

(% inhibition ± SD)                  

1 µM 5 µM 

182 (lead) 3.3 ± 0.5 71 ± 6 96 ± 2 

1b  0.97 ± 0.09  84 ± 0.7 95 ± 0.5 

2b 3.0 ± 0.2  
 

47 ± 0.2 

3b  1.1 ± 0.1  75 ± 1 92 ± 0.3 

4b  1.3 ± 0.2  61 ± 0.4 87 ± 0.2 

2c 1.2 ± 0.007 79 ± 2 94 ± 0.01 

CA4  0.96 ± 0.07  90 ± 1 99 ± 0.2 

 

Based on their microtubule depolymerizing activities, compounds 1b–4b, and 2c 

were tested for their direct effects on tubulin assembly and colchicine binding (Table 9). 

Except 2b, all compounds, at 5 M, inhibited [3H]-colchicine binding to the protein 

comparable to CA4. Compounds 1b (N4-Et), 3b (N4-Pr) and 4b (N4-Bu) inhibited tubulin 

assembly about as well as CA4 and about 3-fold better than 182 (N4-Me). 

Compounds 1b, 3b and 4b, at 5 M concentration, also inhibited binding of [3H]-

colchicine by 87‒95%, whereas the N4-isopropyl analog 2b showed only 47% inhibition 

(Table 9). The lower activity might be due to steric hindrance in the colchicine binding 

site. The data indicates that the N4-alkylation is tolerated for tubulin inhibition. 

Compound 2c (4'-SMe) inhibited tubulin assembly comparable to CA4 and is 3-fold 

better than the lead 4'-OMe analog 182.  
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Table 10. RTK inhibitory activities of target compounds 1b–3b and 1c–5c and 

intermediates 214, 215, 218 and 219 [Data kindly provided by Dr. Michael Ihnat, 

Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, 

OK 73117] 

Compd 
EGFR 

(nM) 

VEGFR-2 

(nM) 

PDGFR- 

(nM) 

A431 

Cytotoxicity 

(nM) 

CAM 

angiogenesis 

inhibition (µM) 

182 (lead) 15.5 ± 2.0 9.3 ± 0.72 12.3 ± 2.0 5.1 ± 0.56 n.d. 

1b 92.5 ± 9.9 67.3 ± 6.9 51.4 ± 7.2 3.4 ± 3.3 0.812 ± 0.091 

2b 10.1 ± 0.91 23.4 ± 4.1 42.6 ± 5.6 4.8 ± 3.1 0.480 ± 0.078 

3b 7.1 ± 0.74 12.0 ± 1.6 38.9 ± 6.6 2.3 ± 2.5 0.301 ± 0.044 

1c 4.0 ± 0.39 7.8 ± 0.94 28.9 ± 4.0 1.4 ± 0.5 0.287 ± 0.040 

2c 7.2 ± 0.81 13.6 ± 2.0 62.2 ± 9.6 2.9 ± 3.0 0.520 ± 0.051 

3c 6.4 ± 0.97 12.7 ± 1.8 57.8 ± 9.9 2.9 ± 3.4 0.707 ± 0.082 

4c 3.1 ± 0.06 15.6 ± 2.2 63.0 ± 10.7 1.0 ± 0.1 0.653 ± 0.072 

5c >200 >200 >300 432.7 ± 30.7 1.058 ± 0.124 

214 >200 >200 >300 
  

215 >200 >200 >300 
  

218 >200 >200 >300 
  

219 >200 >200 >300 
  

Semaxanib  12.9   60 ± 10.1 

Cisplatin    10.6 18.2 ± 2.1 

Sunitinib 172.1 ± 19.4 18.9 ± 2.7 83.1 ± 10.1 n.d. 1.3 ± 0.07 

Erlotinib 1.2 ± 0.2 124.7 ± 18.2 n.d. n.d. 29.1 ± 1.9 

an.d. not determined. 

Compounds 1b–3b and 1c–5c were evaluated for inhibition against EGFR, VEGFR-

2 and PDGFR- kinases using high-throughput phosphotyrosine ELISA (Table 10). 

Compounds 3b and 1c‒4c inhibited EGFR kinase less than 5-fold compared to the 

standard EGFR kinase inhibitor erlotinib. The N4-Me-4'-N,N-diMe analog 4c is the most 
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potent EGFR kinase inhibitor with an IC50 of 3.1 nM. With the exception of compound 

1b, the EGFR kinase inhibition data correlated very well with the A431 cytotoxicity data. 

Compounds 1b‒3b and 1c‒4c had single-digit nanomolar IC50 values in EGFR-

overexpressing A431 cells. 

Compounds 2c, 3c and 1c‒4c showed VEGFR-2 kinase inhibition better than or 

equal to the standard VEGFR-2 kinase inhibitor sunitinib (Table 10). In PDGFR- kinase 

assay, compounds 1b‒3b and 1c‒4c had better activity than the standard sunitinib. 

Antiangiogenic effects of target compounds were evaluated using chorioallantoic 

membrane (CAM) assay. Compounds 1b‒3b and 1c‒4c had submicromolar inhibition of 

angiogenesis and are more potent than multi-RTK inhibitor sunitinib. Among the target 

compounds, compounds 3b and 1c are the most potent compounds in the CAM assay, 

with potencies about 4-fold better than sunitinib. Compound 5c with electron-

withdrawing NO2 group at the 4'-position showed no activity against EGFR, VEGFR-2 

and PDGFR- kinases. However, in the CAM assay, compound 5c had potency 

comparable to sunitinib. N4-Desmethyl intermediates 213‒215, 218 and 219 were also 

tested for RTK inhibition and were inactive (IC50 >200 nM) against VEGFR-2, PDGFR-

 and EGFR kinases. 

At the N4-position, longer chain alkyl groups were favored for the inhibition of 

tubulin and EGFR kinase but were not tolerated for VEGFR-2 and PDGFR-β inhibition, 

indicating steric intolerance at the N4-position for anti-VEGFR-2 and anti-PDGFR-β 

activity. At the 4'-position of furo[2,3-d]pyrimidines, both hydrogen-bond acceptor and 

hydrophobic group were required for inhibition of tubulin and EGFR kinase. However, 

for VEGFR-2 and PDGFR-β inhibition, hydrogen-bond acceptor at 4'-position was not 
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required. Compounds 1b, 3b and 2c‒4c had potent multi-RTK inhibition along with 

potent anti-tubulin activity, thus making them single agents with combination 

chemotherapy potential. Compounds 2b (N4-iPr-4'-OMe) and 1c (N4-Me-4'-Et) showed 

potent RTK inhibition with weak microtubule depolymerizing activity. Therefore, 

compounds 2b and 1c can be used in anticancer chemotherapy either alone as RTK 

inhibitors or in combination chemotherapy with other cytotoxic agents.  

Table 11. Target compounds 1b, 3b, 4b and 1c‒4c circumvent Pgp and βIII-tubulin 

mediated resistance [Data kindly provided by Dr. Susan Mooberry, Department of 

Pharmacology, University of Texas Health Science Center at San Antonio, TX 78229] 

Compd 

            IC50 ± SD (nM)            IC50 ± SD (nM) 

SKOV3  
SKOV3-

MDR1-M6/6  
Rra HeLa 

HeLa 

WTβIII 
Rra 

182 (lead) 7.7 ± 0.8 8.4 ± 0.4  1.1  9.5 ± 0.8 8.1 ± 0.9  0.9  

1b 14.5  ± 1.0 18.3 ± 1.0 1.3 15.8  ± 1.4 14.6 ± 1.8 0.9 

3b 40.3 ± 2.6 71.0  ± 19 1.8 33.8 ± 7.4 35.3  ± 9.9 1.0 

4b 147.8 ± 2.9 200.0 ± 17.1 1.4 111.1 ± 19.0 115.9 ± 9.8 1.0 

1c 155.8 ± 15.0 161.9 ± 21.5 1.0 120.5  ± 4.2 159.0 ± 17.6 1.3 

2c 18.6 ± 0.1 32.1 ± 1.5 1.7 15.7 ± 1.2 14.9 ± 1.9 0.9 

3c 73.8 ± 1.8 85.6 ± 5.0 1.2 95.0 ± 9.0 101.0 ± 22.0 1.1 

4c 70.3 ± 6.1 91.2 ± 19.5 1.3 57.7 ± 5.0 59.4 ± 6.8 1 

Paclitaxel 5.0 ± 0.6 1,200 ± 58 240 2.8 ± 0.36 24.0 ± 3.0 8.6 

CA4 5.5 ± 0.5 7.2 ± 1.1  1.3 3.3 ± 0.4 3.3 ± 0.3 1 

aRr: Relative resistance 

Potent microtubule depolymerizing agents 1b, 3b, 4b and 1c‒4c were evaluated for 

Pgp-mediated drug resistance in an SKOV3 isogenic cell line pair (Table 11).210 This cell 

line pair consists of the parental SKOV3 ovarian carcinoma cell and the Pgp-

overexpressing SKOV3 MDR-1-6/6 cell line. The relative resistance value, designated 
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Rr, is obtained by dividing the IC50 values obtained in the Pgp-expressing MDR-1-6/6 

cells by the IC50 obtained in the parental cells. A low Rr indicates that the cell lines have 

similar sensitivity to the compound and that the compound is able to overcome the 

expression of Pgp. It also suggests that the compound is a poor substrate for transport by 

Pgp. On the other hand, compound with a high Rr value indicates Pgp-mediated drug 

resistance. In this cell line pair, paclitaxel has a high Rr value of 240 (Table 11) while 

target compounds 1b, 3b, 4b and 1c‒4c had low Rr values of less than 2, similar to that 

observed with CA-4. The data indicates that the target compounds circumvent Pgp-

mediated drug resistance observed with taxanes and vinca alkaloids.  

Compounds 1b, 3b, 4b and 1c‒4c were also assessed for βIII-tubulin mediated 

resistance in an isogenic HeLa cell line pair (Table 11).210 Rr value of a compound will 

be obtained by dividing the IC50 value of the compound in the βIII-tubulin expressing 

HeLa WTIII cell line by the IC50 value in the parental HeLa cell line. Paclitaxel showed 

βIII-tubulin mediated resistance as it had an Rr value of 8.6. Compounds 1b, 3b, 4b and 

1c‒4c had an Rr value of ≈1.0 implying equal sensitivity to the III-expressing cell line. 

The data suggests that these compounds circumvent βIII-tubulin mediated resistance 

associated with taxanes and vinca alkaloids.  

The NCI performed the hollow fiber assay211 for lead compound 182. The hollow 

fiber assay provides an initial in vivo experience for agents found to have reproducible 

activity in in vitro anticancer assays. Tumor cell lines used in the hollow fiber assay are 

non-small cell lung carcinoma lines NCI-H23 and NCI-H522, breast carcinoma lines 

MDA-MB-231 and MDA-MB-435, colon sarcoma lines SW-620 and COLO 205, 

melanoma lines LOX and UACC-62, ovarian carcinoma lines OVCAR-3 and OVCAR-5, 
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and glioma lines U251 and SF-295. Compound 182 had an intraperitoneal (ip) score of 

20 out of 48, subcutaneous (sc) score of 12 out of 48 and total score of 32 of 96. Based on 

the hollow fiber assay data, compound 182 was selected for xenograft studies in mice. 

  

Figure 46. Compound 182 (AG16) considerably decreased tumor volume in MDA-MB-

435 tumor xenografts. [Data kindly provided by Dr. Susan Mooberry, Department of 

Pharmacology, University of Texas Health Science Center at San Antonio, TX 78229] 

Compound 182 (AG16) was tested for antitumor effects in MDA-MB-435 tumor 

fragments (Figure 46). MDA-MB-435 tumor fragments were injected s.c. into the flank 

of nude mice. Once tumors reached ~200 mm3, mice were injected i.p. with 182 (60 

mg/kg on days 1 and 3 and 50 mg/kg on day 9) or paclitaxel (20 mg/kg every other day 

until day 11). Three doses of 182 (60 mg/kg on days 1 and 3, and 50 mg/kg on day 9) led 

to highly significant inhibition of tumor growth superior to paclitaxel throughout the trial.  

The NCI performed toxicity studies on 182 in the athymic nude mice.211 Compound 

182 in 100% DMSO was administered i.p. on Day 1 and the mice were observed for 

survival for 15 days. Mice with the compound dose of 12.5, 25 and 50 mg/kg survived 

for 15 days. Higher compound doses of 100, 250 and 500 mg/kg resulted in the death of 
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mice after 4, 1 and 1 days respectively. Based on this data, compound 182 can be 

considered safe at doses ≤50 mg/kg in mice. 

 

A.3 Biological data of N4-aryl-5-chloro-2,4-diamino-pyrimido[4,5-b]indoles  

Compounds 1d‒4d and 6d were evaluated for antiproliferative effects in MDA-MB-

435 cell lines (Table 12). Compounds 1d‒4d had >40-fold lower activity than the 4'-OMe 

analog 183. The data indicates that the methoxy group at 4'-position is important for 

antiproliferative activity. Compound 6d displayed 1.5-fold higher IC50 than 183, 

indicating that conformational restriction of the N4-phenyl ring is not conducive to 

activity. 

Table 12. Antiproliferative and microtubule depolymerizing effects of 1d‒6d [Data 

kindly provided by Dr. Susan Mooberry, Department of Pharmacology, University of 

Texas Health Science Center at San Antonio, TX 78229] 

Compd  
IC50 ± SD (µM) 

(MDA-MB-435) 

183 (lead) 0.183 

1d 4.19 ± 0.5 

2d 3.03 ± 0.3 

3d 4.22 ± 0.5 

4d 6.47 ± 0.3 

5d n.d.a 

6d 0.271 ± 0.004  

CA4 3.4 ± 0.6 nM 

an.d. not determined. 

Lead compound 183 was evaluated by the NCI using hollow fiber assay.211 

Compound 183 had an intraperitoneal (ip) score of 4 out of 48, subcutaneous (sc) score of 
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0 out of 48 and total score of 4 of 96. A compound is considered for xenograft testing if it 

has a combined ip + sc score of 20 or greater, a sc score of 8 or greater, or produces cell 

kill of any cell line at either dose level evaluated. Compound 183 (75 mg/kg) did not 

satisfy these criteria and hence was not selected for xenograft studies in mice.  

A.4 Biological data of 2,4-substituted pyrimido[4,5-b]indoles  

Table 13. Effects of 1e‒3e and 1f‒3f on proliferation of MDA-MB-435 cells and 

microtubule depolymerization in A-10 cells [Data kindly provided by Dr. Susan 

Mooberry, Department of Pharmacology, University of Texas Health Science Center at 

San Antonio, TX 78229] 

Compd  
IC50 ± SD (nM) 

(MDA-MB-435)  

EC50 (nM) for 

microtubule 

depolymerization  

185 (lead) 14.7 ± 1.5 105 ± 12  

1e 23.5 ± 1.2 198 ± 8 

2e 54.4 ± 4.0 152 ± 2.8 

3e 14.4 ± 0.5 83 ± 4 

1f 89.1 ± 10.2 1100 

2f 33.9 ± 3.4 136 

3f 130.2 ± 7.8 1200 

CA4  3.4 ± 0.6 13.0  

 

Among 2,4-substituted pyrimido[4,5-b]indoles 1e‒3e and 1f‒3f, compound 3e178 had 

the most antiproliferative and microtubule depolymerizing effects and was comparable or 

better than the lead compound 185 (Table 13). Conformationally restricted analog 2e had 

3.5-fold higher IC50 than 185, thus indicating that restriction of the N4-phenyl ring is not 
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tolerated. Replacement of the 4'-OMe (185) with 4'-SMe group (1f) resulted in 6-fold 

increase in IC50. The 2-methyl 2f and the 2-H analog 3f displayed lower activity than the 

2-amino 185 in both cell proliferation and microtubule depolymerizing assays indicating 

the importance of 2-amino group for antitubulin activity in this series of analogs.  

Table 14. Compounds 1e‒3e and 1f‒3f: Inhibition of tubulin assembly and binding of 

[3H]-colchicine [Data kindly provided by Dr. Ernest Hamel, Division of Cancer 

Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National 

Cancer Institute, MD 21702] 

Compd 
Inhibition of tubulin 

assembly  
Inhibition of colchicine binding 

  IC50 ± SD (µM) (% inhibition ± SD) at 5 µM 

185 (lead) 1.4 ± 0.007 84 ± 0.5 

1e 1.7 ± 0.2 76 ± 3 

2e 2.2 ± 0.1 71 ± 5 

3e 1.7 ± 0.07 82 ± 1 

1f 2.3 ± 0.3                                  67 ± 5 

2f 1.2 ± 0.04                                67 ± 5 

3f 2.3 ± 0.4   62 ± 4 

CA4 1.0 ± 0.09 99 ± 0.2 

 

Target compounds 1e, 3e and 2f inhibited tubulin assembly comparable to CA4 

(Table 14).  In this series of compounds, compound 3e178 was the most potent in the 

colchicine displacement assay, with activity comparable to the lead compound 185.  

Compounds 1e‒3e and 1f‒3f were evaluated for Pgp and βIII-tubulin mediated 

resistance in isogenic SKOV3 and HeLa cell line pairs, respectively (Table 15).210 In 

SKOV3 cell line pair, paclitaxel has a high Rr value of 590 indicating that the cells 

overexpressing Pgp were resistant to paclitaxel. Target compounds 1e‒3e and 1f‒3f had 
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Rr values of less than 2, similar to that observed with CA-4. Compound 3e178 had almost 

2-fold lesser activity than CA4 in both wild type and Pgp-overexpressing SKOV3 cell 

lines.  

Table 15.  Compounds 1e‒3e and 1f‒3f are effective in cell lines expressing Pgp or βIII-

tubulin [Data kindly provided by Dr. Susan Mooberry, Department of Pharmacology, 

University of Texas Health Science Center at San Antonio, TX 78229] 

Compd                 IC50 ± SD (nM)            IC50 ± SD (nM) 

 SKOV3 
SKOV3  

MDR-1-6/6 
Rra HeLa WT βIII Rra 

185 (lead) 27.6 ± 1.8 34.4 ± 5.9  1.2 21.3 ± 2.2  21.4 ± 3.5  1.0 

1e 53.0 ± 1.9 72.0 ± 7.9 1.4 32.8 ± 0.8 45.5 ±1.0 1.4 

2e 83.2 ± 5.7 134.7 ±  23.2 1.6 72.1 ± 7.9 87.0 ± 4.1 1.2 

3e  23.0 ± 1.1 29.1 ± 1.7 1.3 23.1 ± 0.8 18.8 ± 0.5  0.8 

1f 156.4 ± 16.0 160.1 ± 14.9 1.0 117.7 ± 13.2 78.4 ± 4.0 0.7 

2f 60.5 ± 2.4 78.0 ± 8.4 1.3 50.5 ± 5.3 31.8  ± 2.5 0.6 

3f 173.2 ± 8.6 223.7 ± 21.2 1.4 141.5 ± 8.1 99.5 ± 11.8 0.8 

paclitaxel 4.4 ± 0.6 2596 ± 119 590 1.6 ± 0.5 9.2 ± 0.2 5.8 

CA4 9.7± 0.2 11.5 ± 1.7 1.2 4.7 ± 1.1 5.2 ± 0.4 1.1 

aRr: Relative resistance 

In the HeLa cell line pair, paclitaxel showed βIII-tubulin mediated resistance as it 

had an Rr value of 5.8 (Table 15) where as target compounds 1e‒3e and 1f‒3f had an Rr 

value of ≈1.0 implying equal sensitivity to the III-expressing cell line. Compound 3e178 

displayed potency comparable to the lead compound 185 in HeLa and βIII-tubulin 

expressing cell lines. The data indicates that these compounds overcome Pgp and βIII-

tubulin mediated resistance observed clinically with taxanes and Vinca alkaloids.  

Lead compound 185 was evaluated using hollow fiber assay by the NCI.211 

Compound 185 had an intraperitoneal (ip) score of 14 out of 48, subcutaneous (sc) score 
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of 2 out of 48 and total score of 4 of 96. Compound 185 was not considered for xenograft 

studies as it had a combined ip + sc score of less than 20, a sc score of less than 8, and did 

not produce cell kill of any cell line at dose level (150 mg/kg) evaluated.  

A.5 Biological data of 2-amino-4-oxo-5-thioaryl-9H-pyrimido[4,5-b]indoles 

Table 16. Kinetic evaluation of 1g, 2g, 4g and 7g reveals species selectivity for tgTS over 

hTSa 

Cmpd 
IC50 (nM) Ki (nM) Selectivity  

(hTS Ki/ tgTS Ki) tgTS  hTS  tgTS   hTS  

1g 23 ± 6.6  481 ± 162  2.0 ± 0.6  55.7 ± 18.8  27.9 

2g 21 ± 13 28.8 ± 21 1.8 ± 1.1 3.3 ± 2.4 1.83 

4g 35.8 ± 2.9  3250 ± 184  3.1 ± 0.25 378 ± 21  121.9 

7g 43.4 ± 5.2  738.7 ± 235.4  3.8 ± 0.4  85.6 ± 27.3  22.5 

aT. gondii TS‒DHFR (25 nM) and human TS (50 nM) were preincubated with 100 µM dUMP and 

inhibitor. The reaction was initiated with 100 µM methyleneTHF. 

Compounds 1g, 2g, 4g and 7g exhibited single-digit nanomolar Ki values against 

tgTS (Table 16).193 More importantly, compound 1g, 4g and 7g, respectively, showed 

unprecedented 28-fold, 122-fold and 22-fold selectivity for tgTS over hTS.   

To determine the structural basis for the observed activity and selectivity, X-ray co-

crystal structures of 1g and 4g with T. gondii TS‒DHFR was determined (Figure 47).193 

The atomic coordinates of T.gondii TS‒DHFR/compound 1g and 4g described here have 

been deposited in the PDB (www.pdb.org) with accession codes 4KY4 and 4KYA, 

respectively. Upon superimposing the tgTS and hTS, almost all of the residues in the 

active site were found to be identical. It was surprising that a remarkable 28-fold 

selectivity (Ki value) was observed for 1g despite almost identical architectures of the 

active sites of tgTS and hTS. 

http://www.pdb.org/
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Figure 47. Inhibitors 1g and 4g in the active site of T. gondii TS. The key residues are 

highlighted in red. The inhibitors 1g and 4g and the substrate dUMP are colored 

yellow.193 

As shown in Figure 47, the crystal structure of the tgTS‒DHFR with 1g and 4g 

revealed extensive base stacking interactions between the inhibitor and the nucleotide 

dUMP as expected. The phenyl ring of 1g or the 1'-naphthyl ring of 4g are oriented 

almost at a right angle to the tricyclic scaffold and interacts with Ile402, Leu516, Phe520 

and Met608. The scaffold is also stabilized by hydrophobic interactions of the C-ring 

with Trp403. Using X-ray co-crystal structure of 1g with tgTS‒DHFR, ligand interactions 

were generated using MOE 2013.08184 (Figure 48).  
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Figure 48. Interactions between 1g and residues in the active site of tgTS. 

Compound 1g is bound to the active site by aromatic stacking of the pyrimido[4,5-

b]indole scaffold and the dUMP pyrimidine ring. Additionally, hydrogen bonds are 

formed between the N9 of 1g and carboxyl of Asn406, the N3 and the 2-NH2 group with 

the –COOH of Asp513 (Figure 48). The 2-NH2 group forms additional hydrogen bond 

with the backbone oxygen of Ala609.  

Table 17. Toxoplasma cell culture study of 1g, 2g and 4g 

Condition 

T. gondii 

in media 

at Day 4 

T. gondii  

in cells at 

Day 4 

Estimated IC50 

value, Ma 

No drug 3710000 1140000  

1g  (5 µM) 100000 140000 3.7 

2g  (5 µM) 2350000 340000 2.6 

4g  (5 µM) <25000 <2500 0.6 

pyrimethamine 

(3 µM) 
<25000 <2500 0.57 

aDose response curves using data from the three concentrations of test compounds gave estimates of IC50 

values. 
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Compounds 1g, 2g and 4g have also been evaluated against T. gondii cells in culture 

(Table 17).193 The culture model requires that the experimental compounds rapidly kill 

exposed tachyzoites as they are released from cells and/or that the experimental 

compounds penetrate the cell and the vacuole containing tachyzoites where the 

compounds may kill the organism or prevent its replication. Compound 4g, at 5 M, was 

found to be equivalent to pyrimethamine at 3 M indicating a significant effect on T. 

gondii in culture comparable to a clinically used agent PM. Both compounds 1g and 2g, 

at 5 M, were 4‒6 times less active than pyrimethamine at 3 M.  

Methods for biological evaluation 

Effects of compounds on cellular microtubules. A-10 cells were used to evaluate the 

effects of the compounds on cellular microtubules using indirect immunofluorescence 

techniques.212 Cells were treated for 18 h with compounds and microtubules were 

visualized with an antibody towards β-tubulin (Sigma‒Aldrich Co.). EC50 values were 

calculated from an average of a minimum of three independent experiments. 

Sulforhodamine B (SRB) assay. The SRB assay was used to evaluate the 

antiproliferative and cytotoxic effects of the compounds against cancer cells.210 MDA-

MB-435, SK-OV-3 and HeLa cells were purchased from the American Type Culture 

Collection (Manassas, VA). The IC50 values (concentration required to cause 50% 

inhibition of proliferation) represent an average of 3 independent experiments using 

triplicate points in each experiment.   
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In vitro tubulin polymerization. The effect of the compounds on tubulin polymerization 

was measured using purified porcine brain tubulin (Cytoskeleton Inc.).55 Briefly, 2.2 

mg/mL of purified porcine brain tubulin was incubated with tubulin polymerization 

buffer (80 mM Na-PIPES, pH 6.9, 1 mM EGTA, 1 mM MgCl2, 10 mM GTP and 10% 

glycerol) and 10 μM of each corresponding drug. The polymerization of tubulin was 

monitored turbidimetrically by measuring the absorbance at 340 nm at 37 °C in a 

SpectraMax 96-well plate spectrophotometer.  

Quantitative tubulin studies. Bovine brain tubulin was purified as described 

previously.213 Briefly, 1.0 mg/mL of tubulin (10 µM) was incubated for 15 min with 

0.8M monosodium glutamate (pH of 2M stock solution adjusted to 6.6 with HCl), 

varying compound concentrations and 4% (v/v) dimethyl sulfoxide (DMSO) as solvent. 

After preincubation, 0.4 mM GTP was added. The reaction mixtures were transferred to 

the cuvettes at 0 °C and were placed in a recording spectrophotometer equipped with an 

electronic temperature controller. After baselines were established, the temperature was 

jumped over about 30 s to 30 °C, and changes in turbidity were monitored for 20 min. 

The compound concentration that caused a 50% reduction in increase in turbidity, 

interpolated from the values obtained with defined compound concentrations, was 

defined as the IC50 value. The assay to measure inhibition of [3H]colchicine binding was 

described in detail previously.214 Briefly, 0.1 mg/mL (1.0 µM) tubulin was incubated, at 

37 °C, 5.0 µM [3H]colchicine, and potential inhibitors at 1.0 or 5.0 µM, as indicated. 

Incubation was for 10 min at which point the reaction has reached 40-60% of the 

maximum colchicine that can be bound in reaction mixtures without inhibitor. The 
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[3H]colchicine was a product of Perkin‒Elmer. CA4 was a generous gift of Dr. G. R. 

Pettit, Arizona State University. 

Antibodies. The PY-HRP antibody was obtained from BD Transduction Laboratories 

(Franklin Lakes, NJ). Antibodies against EGFR, VEGFR-2, and PDGFR-β were 

purchased from Cell Signaling Technology (Danvers, MA).  

Phosphotyrosine enzyme‒linked immunosorbent assay (ELISA). A high-throughput 

phosphotyrosine ELISA was developed for evaluating the effect of compounds on 

RTKs.215 Cells used for these experiments have been shown to overexpress particular 

RTKs; specifically A431 for EGFR, U251 for VEGFR-2, and SH-SY5Y for PDGFR-. 

Briefly, cells at 60–75% confluence are placed in serum-free medium for 18 h to reduce 

the background of phosphorylation. Cells were always >98% viable by Trypan blue 

exclusion. Cells were then pretreated for 60 min with a dose-response relation of 100-1.4 

µM compound followed in ⅓ Log increments by 100 ng/mL of purified growth factor 

(EGF, VEGF, or PDGF-BB) for 10 min. The reaction was stopped, and the cells were 

permeabilized by quickly removing the media from the cells and adding ice-cold tris-

buffered saline (TBS) containing 0.05% Triton X-100, protease inhibitor cocktail, and 

tyrosine phosphatase inhibitor cocktail (Sigma‒Aldrich Co.). The TBS solution was then 

removed, and cells fixed to the plate for 30 min at 60 °C and further incubation in 70% 

ethanol for an additional 30 min. Cells were further exposed to block (TBS with 1% 

BSA) for 1 h, washed, and then a horseradish peroxidase (HRP)-conjugated 

phosphotyrosine (PY) antibody was added overnight. The antibody was removed, cells 

were washed again in TBS, exposed to an enhanced luminol ELISA substrate, (Pierce 

Chemical EMD, Rockford, IL) and light emission was measured using a plate reader. The 
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known RTK-specific inhibitors (semaxanib, sunitinib, erlotinib) were used as positive 

controls for kinase inhibition. Data were graphed as a percent of cells receiving growth 

factor alone, and IC50 values were calculated from two to three separate experiments 

(n = 8–24) using sigmoidal dose-response relations in Prism 3.0 software (GraphPad). 

Chorioallantoic membrane (CAM) assay. The CAM assay is a standard assay for 

testing antiangiogenic agents and was performed as previously216 described. Briefly, 

fertile leghorn chicken eggs (CBT Farms, Chestertown, MD) were allowed to grow until 

10 days of incubation. The pro-angiogenic factors, human VEGF-165 and basic fibroblast 

growth factor (bFGF) (100 ng each) were then added at saturation to a 6 mm microbial 

testing disk (BBL, Cockeysville, MD) and placed onto the CAM by breaking a small hole 

in the superior surface of the egg. To the same microbial disk, antiangiogenic compounds 

were then added 8 h after the VEGF/bFGF at saturation and embryos were allowed to 

incubate for an additional 40 h. After 48 h, CAMs were perfused with 2% 

paraformaldehyde/3% glutaraldehyde containing 0.025% Triton X-100 for 20 sec, 

excised around the area of treatment, fixed again in 2% paraformaldehyde/3% 

glutaraldehyde for 30 min, placed on Petri dishes, and a digitized image taken using a 

dissecting microscope (Wild M400; Bannockburn, IL) at 7.5× and SPOT enhanced 

digital imaging system (Diagnostic Instruments, Sterling Heights, MI). A grid was then 

added to the digital CAM images and the average number of vessels within 5–7 grids 

were counted as a measure of vascularity. Sunitinib and semaxanib were used as positive 

controls for antiangiogenic activity. Data were graphed as a percent of CAMs receiving 

bFGF/VEGF only and IC50 values calculated from two to three separate experiments 

(n = 5–11) using non-linear regression dose-response relation analysis.    
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MDA-MB-435 flank tumor model. Human MDA-MB-435 basal-like breast cancer cells 

(500,000) in media were implanted into the lateral flank of 8 week old female NCr 

athymic nu/nu nude mice (Charles River, Wilmington, DE). Tumor sizes (length, width, 

depth) were measured twice weekly. When volumes reached 75‒100 mm3 (day 7 after 

implantation), the tumors were treated with drugs at their maximum tolerated dose 

(MTD) and tumor volumes were measured twice weekly. The MTD of docetaxel was 

found to be 35 mg/kg, sunitinib 30 mg/kg, pemetrexed 30 mg/kg, 1 25 mg/kg and 2 35 

mg/kg.  

4T1 triple negative breast orthotopic allograft model. 4T1-Luc2GFP dual 

luciferase/GFP tagged cells were purchased from Caliper Life Sciences (Hopkinton, MA) 

and maintained in Dulbecco’s modification of minimal essential media (DMEM) 

containing 10% Cosmic Calf Serum (Hyclone, Logan, UT). 750 cells [verified by 

fluorescence imaging to be >98% GFP positive and counted three times on a TC10 

automated cell counter (BioRad, Hercules, CA)] in 100 µL PBS with 1 mM EDTA were 

implanted subcutaneously into the left fat pad #4 of 8 week old female BALBc/J mice 

using a tuberculin syringe. The MTD of drugs were delivered to animals twice weekly 

starting three days after implantation. Tumor sizes (length, width, depth) were measured 

three times weekly. At day 33 post implantation, animals were humanely euthanized 

using the AALAC approved method of carbon dioxide asphyxiation. Tumors and lungs 

were removed and fresh lungs imaged using a LumaScope fluorescent imaging system 

(Bulldog Bio, Portsmouth, NH) at 25× magnification with the number of metastases per 

lung counted by hand from captured images.  
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Expression, Purification, and crystallization of T. gondii TS-DHFR. Wild-type T. 

gondii TS‒DHFR was expressed and purified as described previously.217 The loop 

truncated form of TS‒DHFR enzyme was purified as described before for structure 

determination. Wildtype TS‒DHFR was used for kinetic assays. Briefly, the TS‒DHFR 

was overexpressed in E. coli BL21 cells after induction with IPTG. In the final step, the 

protein was stored in buffer containing 25 mM Tris pH 7.3 and 10 mM DTT. The ligands 

NADPH, methotrexate, dUMP and the inhibitor were added to a final concentration of 

500 µM. Crystallization was achieved at a concentration of 10 mg/mL with a 1:1 ratio of 

the enzyme and the well solution containing PEG 3350 and potassium phosphate. The 

crystals were cryoprotected in mother liquor containing ethylene glycol and frozen in 

stepwise transfers into liquid nitrogen. Data were collected at beamlines X25 and X29 at 

Brookhaven National Laboratory.  

X-Ray structure determination. Initial processing of X-ray data was accomplished by 

using HKL2000.218 The loop truncated model (PDB accession code: 4EIL) was used as 

the search model for molecular replacement by using PHASER.219 Refinement of the 

structure was carried out by REFMAC.220 The ligand and its topology file was generated 

by the PRODRG server,221 and manual adjustments to the model and the ligand were 

made in COOT.222 Figure was generated using PYMOL.223  

IC50 and Ki values of T. gondii TS‒DHFR. Separately, the T. gondii TS‒DHFR (25 nM) 

and human TS (50 nM) were incubated with dUMP and inhibitor both at 100 μM, and the 

reaction was initiated with methylene tetrahydrofolate (100 μM).193 The change in 

absorbance was monitored by TECAN plate reader at 340 nm. The data was plotted using 

KALEIDAGRAPH. The IC50 values were then determined, from which Ki was 



www.manaraa.com

 208 

determined. The nucleotide dUMP, the cofactor NADPH and methylene tetrahydrofolate 

were purchased from Sigma‒Aldrich Co.  

T. gondii cell culture study. T. gondii strain HX was grown in culture on an 

immortalized human cell line (human telomerase reverse transcriptase (H-tert)) both to 

prepare innoculum and for the experimental drug tests.193 Freshly lysed parasites were 

removed from culture, resuspended in sterile phosphate buffered saline, counted, and 

diluted in medium to allow addition of 1300 T. gondii tachyzoites to each well of 24-well 

culture plates containing monolayers of H-tert cells. After incubation for 4 h at 37 ºC, 

each well received either 500 µL of media (DMEM, 1% fetal calf serum), or media 

including various concentrations (5, 0.5, 0.05 µM) of experimental drug. Wells were 

evaluated visually and one set of wells was harvested daily for four days. Media (10 µL) 

from harvested wells was spread over a 1 cm square area on a microscope slide; cells in 

harvested wells were scraped and resuspended in 100 µL of fresh medium and 10 µL was 

spread over a 1 cm square area on a microscope slide. After air-drying, each slide was 

fixed in methanol and stained with Giemsa Plus. Organisms and cells/1000× field were 

counted as an indication of growth of T. gondii in the presence or absence of test 

compounds or pyrimethamine, which served as the positive control. By day 2 of growth, 

T. gondii tachyzoites began to be detected in the sampled control cell monolayers. By day 

4, untreated monolayers were mostly lysed with numerous tachyzoites in both media 

samples and cell samples.   

B. Bulk synthesis of lead compounds 182, 183, 185 and target compound 4g 

N4-Methylation of 181 using dimethyl sulfate furnished 182 in 70% yield (Scheme 

48).174 This scheme was used to synthesize 2 g of 182 required for preclinical evaluation. 
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Scheme 48. Synthesis of 182 

 

Scheme 49. Synthesis of 183 

 

Nucleophilic displacement of the 4-chloro of 221 with N-methyl-4-methoxyaniline 

241 followed by deprotection of the 2-amino group provided 183 in 60% yield (Scheme 

49).182 This procedure was utilized to synthesize 250 mg of 183 required for hollow fiber 

assay. 

Scheme 50. Synthesis of 185 
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Compound 234 was reacted with N-methyl-4-methoxyaniline 241 in n-butanol at 

reflux followed by base-mediated deprotection of the 2-amino group to afford 185 in 

62% yield (Scheme 50). This procedure was employed to synthesize 500 mg of 185 in 

improved yield (62%) over the reported178 procedure (42%) in which the displacement 

was carried out in isopropanol at reflux for 72 h.  

Scheme 51. Synthesis of 4g 

 

Displacement of the 2-bromo of 192 with ethyl cyanoacetate furnished 251 (Scheme 

51).173 Zinc-catalyzed reduction of the 2-nitro of 251 followed by cyclization provided 

the substituted indole 252. Cyclocondensation of 252 with carbamimidic chloride 

hydrochloride195 afforded 2-amino-4-oxo-5-bromo-pyrimido[4,5-b]indole 253. Reaction 

temperature should be maintained between 120‒125 oC to prevent the formation of side 

products. Ullmann coupling of 253 and 1-naphthylthiol 247 furnished target compound 

4g in 24% yield.193 Column chromatography of 4g should not be carried out using a 

CombiFlash® Rf system because 4g sticks to the silica gel and does not elute out. 
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Experimental section for Schemes 48‒51. 

N-(4-Methoxyphenyl)-N,5-dimethylfuro[2,3-d]pyrimidin-4-amine (182).  

To a 25 mL round bottom flask was weighed 181 (510 mg, 2 mmol) and was added DMF 

(10 mL) to afford a solution. The flask was purged with argon for 5 min followed by 

cooling down to 0 oC using ice bath. Sodium hydride (144 mg, 6 mmol) was added to the 

solution at 0 oC. The solution was stirred for 30 min at 0 oC under argon atmosphere. 

Dimethyl sulfate (757 mg, 6 mmol) was injected to the reaction mixture and the flask was 

warmed to room temperature. The mixture was stirred at room temperature for another 3 

h at the end of which 1N HCl (5 mL) was added carefully to quench the reaction 

followed by water (10 mL) to afford a precipitate. The product was extracted with ethyl 

acetate (10 mL × 3). The combined organic extracts were washed with brine (10 mL), 

dried (anhydrous sodium sulfate) and concentrated under reduced pressure. Silica gel (2 

g) was added and the solvent evaporated to obtain a plug. Column chromatography by 

elution with hexanes and ethyl acetate (5:1) afforded 182 (416 mg, 70%) as an off-white 

solid. TLC Rf = 0.87 (CHCl3/MeOH, 10:1); mp 87.0‒87.8 oC (lit.174 84.8‒85.6 oC); 1H 

NMR (400 MHz, DMSO-d6):  = 1.05 (s, 3H, CH3), 3.44 (s, 3H, OCH3), 3.77 (s, 3H, 

NCH3), 6.96‒6.98 (d, 2H, Ar,  J = 9.0 Hz), 7.19‒7.22 (d, 2H, Ar, J = 9.0 Hz), 7.52 (s, 1H, 

C6-CH), 8.45 (s, 1H, C2-CH). Elemental analysis calculated (%) for C15H15N3O2: C, 

66.90; H, 5.61; N, 15.60. Found: C, 66.92; H, 5.66; N, 15.65. 
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5-Chloro-N4-(4-methoxyphenyl)-N4-methyl-9H-pyrimido[4,5-b]indole-2,4-diamine 

(183).  

Compound 221 (60 mg, 0.178 mmol) was treated with N-methyl-4-methoxyaniline 241 

(73 mg, 0.533 mmol), 20 mL of isopropanol, and 2 drops of conc. HCl in a 100 mL round 

bottom flask. The reaction mixture was heated to reflux for 20 hours. The solvent was 

evaporated and neutralized with 4 mL of ammonia (7N) in methanol. To the solution was 

added silica gel, four times the weight of the reaction mixture, and the solvent was 

removed under reduced pressure to provide a plug.  The plug was transferred on top of a 

column packed with silica gel, twenty times the weight of plug, eluted with 1% methanol 

in chloroform. Fractions containing the product (TLC) were pooled and evaporated to 

give a solid which was further deprotected using 4 mL 1N NaOH solution in 30 mL 

isopropanol upon reflux for 4 hours. The solvent was evaporated to obtain a brown 

colored solid. The resulting precipitate was then dissolved in methanol. To the solution 

was added silica gel, four times the weight of the reaction mixture, and the solvent was 

removed under reduced pressure to provide a plug.  The plug was transferred on top of a 

column packed with silica gel, twenty times the weight of plug, eluted with 0.5% 

methanol in chloroform. Fractions containing the product (TLC) were pooled and 

evaporated to provide 183 in 60% yield. TLC Rf = 0.42 (CHCl3/MeOH, 10:1); mp 

180.1‒180.6 oC (lit.182 179.0‒180.0 oC). 1H NMR (DMSO-d6):  = 3.30 (s, 3H, OCH3), 

3.66 (s, 3H, N-CH3), 6.55 (s, 2H, NH2, exch), 6.76‒7.25 (m, 7H, Ar), 11.65 (s, 1H, 9-NH, 

exch). Elemental analysis calculated (%) for C18H16ClN5O: C, 61.10; H, 4.56; N, 19.79; 

Cl, 10.02. Found: C, 60.91; H, 4.63; N, 19.74; Cl, 10.19.  
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N4-(4-Methoxyphenyl)-N4-methyl-9H-pyrimido[4,5-b]indole-2,4-diamine (185). 

Compound 234 (60 mg, 0.178 mmol) was treated with N-methyl-4-methoxyaniline 241 

(73 mg, 0.533 mmol), 20 mL of n-butanol, and 2 drops of conc. HCl in a 100 mL round 

bottom flask. The reaction mixture was heated to reflux for 76 hours. The solvent was 

evaporated and neutralized with 4 mL of ammonia (7N) in methanol. To the solution was 

added silica gel, four times the weight of the reaction mixture, and the solvent was 

removed under reduced pressure to provide a plug.  The plug was transferred on top of a 

column packed with silica gel, twenty times the weight of plug, eluted with 1% methanol 

in chloroform. Fractions containing the product (TLC) were pooled and evaporated to 

give a solid which was further deprotected using 4 mL 1N NaOH solution in 10 mL 

isopropanol upon reflux for 2 hours. The solvent was evaporated to obtain a brown 

colored solid. The resulting precipitate was then dissolved in methanol. To the solution 

was added silica gel, four times the weight of the reaction mixture, and the solvent was 

removed under reduced pressure to provide a plug.  The plug was transferred on top of a 

column packed with silica gel, twenty times the weight of plug, eluted with 0.5% 

methanol in chloroform. Fractions containing the product (TLC) were pooled and 

evaporated to provide 185 in 62% yield. TLC Rf = 0.70 (CHCl3/MeOH, 5:1); mp 

246.8‒247.2 oC (lit.178 245.3‒245.7 oC). 1H NMR (DMSO-d6):  = 3.34 (s, 3H, OCH3), 

3.73 (s, 3H, N-CH3), 5.77‒5.79 (m, 1H, Ar), 6.21 (s, 2H, NH2, exch), 6.53‒6.57 (m, 1H, 

Ar), 6.90‒6.99 (m, 3H, Ar), 7.14‒7.17 (m, 3H, Ar), 11.24 (s, 1H, 9-NH, exch). Elemental 

analysis calculated (%) for C18H17N5O·0.20CH3OH: C, 67.05; H, 5.52; N, 21.46. Found: 

C, 66.97; H, 5.47; N, 21.55. 
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Ethyl 2-amino-4-bromo-1H-indole-3-carboxylate (252).  

To an ice-cold solution of ethyl cyanoacetate (5.41 g, 57.8 mmol) in anhydrous DMF 

(170 mL) under argon atmosphere was added sodium hydride (1.15 g, 47.8 mmol). Thus 

formed white suspension was stirred for 15 min and then treated with 1,2-dibromo-3-

nitrobenzene 192 (4 g , 14.2 mmol). The suspension was heated at 100 °C for 3 h. After 

cooling the reaction micture to rom temperature, 50 mL H2O was added and the resulting 

mixture was acidified to pH 2.0 with conc. HCl. The mixture was extracted with ether 

(3x) and then the combined organic phases were dried using anhydrous sodium sulfate 

and concentrated to give ethyl (2-bromo-6-nitrophenyl)(cyano)acetate 251 as a yellow 

oil. The material was used directly for the next step. 

A solution of 251 (3.42 g, 11 mmol) in glacial AcOH (150 mL) was treated with a single 

charge of zinc dust (10.26 g, 156 mmol). The mixture was heated at 60 °C for 45 min and 

then recharged with Zn dust (3.42 g, 52 mmol). After heating for another 105 min, the 

mixture was cooled to room temperature and then filtered through a pad of Celite. The 

pad was washed well with AcOH, the filtrate was concentrated and then neutralized with 

5% aq. NaHCO3. The precipitate was collected and then dissolved in methanol. Silica gel 

(5 g) was added to make the plug and was then purified by column chromatography, 

eluting sequentially with 0% and 1% MeOH in CHCl3. The fractions containing the pure 

product (TLC) were pooled and evaporated to give 252 (55% from 192) as a brown solid. 

TLC Rf = 0.30 (CHCl3/MeOH, 10:1 with 2 drops of conc. NH4OH); mp 136.1‒137.0 oC. 

1H NMR (400 MHz, DMSO-d6):  = 1.27‒1.31 (t, 3H, CH3); 4.17‒4.22 (q, 2H, CH2); 

6.75‒6.79 (m, 1H, Ar); 6.82 (bs, 2H, NH2, exch); 7.11‒7.14 (m, 2H, Ar); 10.93 (s, 1H, 

NH, exch). 1H NMR agreed well with the literature reported209 values. 
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2-Amino-5-bromo-3,9-dihydro-4H-pyrimido[4,5-b]indol-4-one (253).  

A mixture of ethyl 4-bromo-2-amino-1H-indole-3-carboxylate 252 (400mg, 1.41 mmol), 

carbamimidic chloride hydrochloride (325 mg, 2.82 mmol) and methyl sulfone (3 g) was 

stirred at 120 °C for 14 h. The reaction mixture was neutralized by ammonia in methanol 

(2‒3 mL) and then 40 mL methanol and 3 g silica gel were added. Thus obtained plug 

was purified by column chromatography on silica gel sequentially eluting with 1%, 5% 

and 10% MeOH in CHCl3 to afford 253 (45%) as a brown solid. TLC Rf = 0.43 

(CHCl3/MeOH, 5:1 with 2 drops of conc. NH4OH); mp >250 oC; 1H NMR (400 MHz, 

DMSO-d6)  = 6.59 (bs, 2H, NH2, exch); 6.97‒7.01 (m, 1H, Ar); 7.23‒7.25 (m, 2H, Ar); 

10.38 (s, 1H, NH, exch); 11.66 (s, 1H, NH, exch). 1H NMR agreed well with the 

literature reported209 values. 

 

2-Amino-5-(1-naphthylsulfanyl)-3,9-dihydro-4H-pyrimido[4,5-b]indol-4-one (4g). 

Compound 253 (100 mg, 0.36 mmol), 1-naphthylthiol 247 (230 mg, 1.43 mmol), copper 

iodide (272 mg, 1.43 mmol) and potassium carbonate (396 mg, 2.86 mmol) were added 

to a Biotage® microwave vial. Around 10 mL DMF was added as solvent and the tube 

was sealed and purged with argon for 5 min. The reaction was run in a microwave at 180 

C for 20 h. After cooling to room temperature, the DMF was removed under reduced 

pressure and the crude product was purified by column chromatography, sequentially 

eluting with 0%, 5% and 8% methanol in chloroform. Fractions containing the product 

(TLC) were pooled and evaporated to afford the desired product 4g as a white solid: yield 

24%. TLC Rf  = 0.46 (CHCl3/MeOH, 5:1 with two drops conc. NH4OH); mp >300 oC 

(lit.193 >250 oC); 1H NMR (400 MHz, DMSO-d6):  = 6.04 (d, 1H, J = 8.0 Hz, C7-CH), 
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6.54 (bs, 2H, NH2, exch), 6.75 (t, 1H, J = 7.6 Hz, C6-CH), 6.97 (d, 1H, J = 8.0 Hz, C8-

CH), 7.48‒7.57 (m, 3H, Ar), 7.73‒7.75 (m, 1H, Ar), 7.99‒8.02 (m, 2H, Ar), 8.19‒8.21 

(m, 1H, Ar), 10.40 (s, 1H, 3-NH, exch), 11.53 (s, 1H, 9-NH, exch). HRMS (ESI): m/z 

calculated for C20H14N4OS + H+ [M+H+]: 359.0967. Found: 359.0981. Elemental 

analysis calculated (%) for C20H14N4OS·0.14CHCl3: C, 64.48; H, 3.80; N, 14.94; S, 8.55. 

Found: C, 64.27; H, 3.69; N, 14.94; S, 8.79. 1H NMR agreed well with the literature 

reported193 values. 
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